Lectures 6 and 7: Merge-sort and Maximum Subarray Problem COMS10007 - Algorithms

Dr. Christian Konrad

18.01.2019

Sorting Problem

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

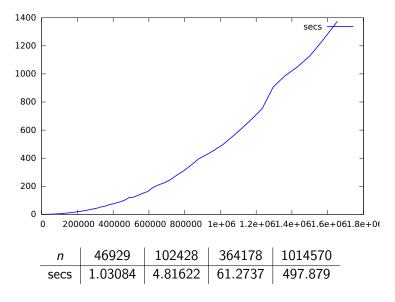
Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

- Worst-case and average-case runtime $O(n^2)$
- Surely we can do better?!

Insertion sort in Practice on Worst-case Instances



Definition (in place)

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

Example: Insertion-sort is in place

Definition (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The **key** is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

family name	first name	data of birth	role
Smith	Peter	02.10.1982	lecturer
Hills	Emma	05.05.1975	reader
Jones	Tom	03.02.1977	senior lecturer

Observe: Stability makes more sense when sorting complex data as opposed to numbers

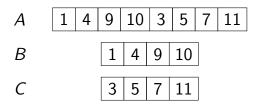
Key Idea:

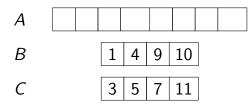
- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

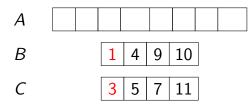
Merge Operation

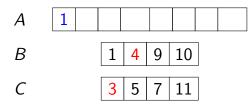
- Copy left half of A to new array B
- Copy right half of A to new array C
- Traverse *B* and *C* simultaneously from left to right and write the smallest element at the current positions to *A*

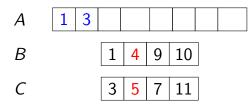
A 1 4 9 10 3 5 7 11

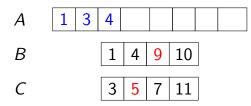


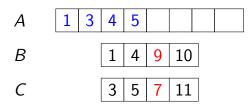


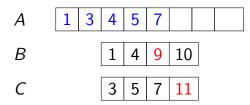


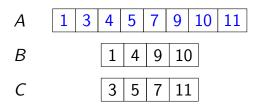












Analysis: Merge Operation

Merge Operation

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array A of n numbers

if n = 1 then

return A

A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])

A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])

A \leftarrow \text{MERGE}(A)

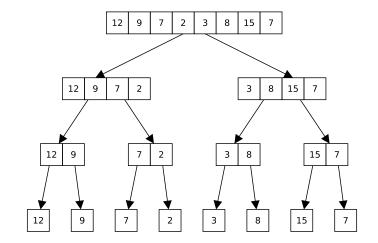
return A
```

MergeSort

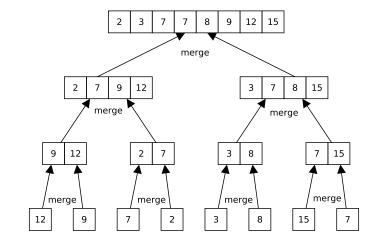
Structure of a Divide and Conquer Algorithm

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

Analyzing MergeSort: An Example



Analyzing MergeSort: An Example



Analysis Idea:

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

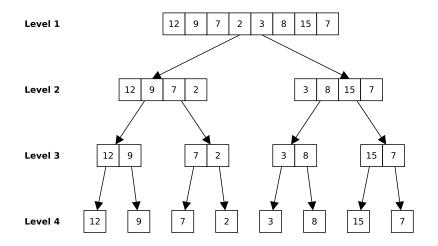
Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

Questions:

- How many levels?
- How many nodes per level?
- Time spent per node?



Number of Levels (2)

Level i:

- 2^{i-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

• Array length in last but one level l-1 is 2: $\lceil \frac{n}{2^{l-2}} \rceil = 2$

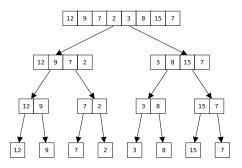
$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$
$$\log(n) + 1 \le l < \log(n) + 2$$

Hence, $l = \lceil \log n \rceil + 1$.

Runtime of Merge Sort

Sum up Work:

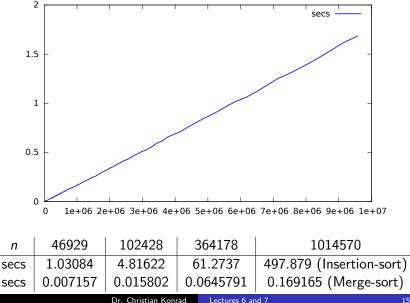
- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ⁿ/_{2ⁱ⁻¹}



Worst-case Runtime:

$$\sum_{i=1}^{\log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}} \right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = \left(\lceil \log n \rceil + 1 \right) O(n) = O(n \log n) .$$

Merge sort in Practice on Worst-case Instances



Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

- **()** A performs two recursive calls on input sizes at most n/2
- **2** The conquer operation in **A** takes O(n) time

Then:

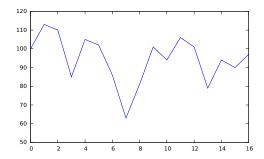
A has a runtime of $O(n \log n)$.

Stability and In Place Property?

- Merge sort is stable
- Merge sort does not sort in place

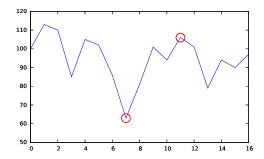
Buy Low, Sell High Problem

- Input: An array of *n* integers
- Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j] − A[i] is maximized



Buy Low, Sell High Problem

- Input: An array of *n* integers
- Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j] − A[i] is maximized



Focus on Array of Changes:

Day												
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Trivial Solution: $O(n^3)$ runtime

- Compute subarrays for every pair *i*, *j*
- There are $O(n^2)$ pairs, computing the sum takes time O(n) .

Focus on Array of Changes:

Day												
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Trivial Solution: $O(n^3)$ runtime

- Compute subarrays for every pair *i*, *j*
- There are $O(n^2)$ pairs, computing the sum takes time O(n) .

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

- **(**) Maximum subarray is entirely included in $L \checkmark$
- 2 Maximum subarray is entirely included in $R \checkmark$
- Maximum subarray crosses midpoint, i.e., i is included in L and j is included in R

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

Two Independent Subproblems:

- Find index *i* such that $\sum_{i=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[l]$ is maximized

We can solve these subproblems in time O(n). (how?)

Require: Array *A* of *n* numbers **if** n = 1 **then return** *A* Recursively compute max. subarray S_1 in $A[0, \lfloor \frac{n}{2} \rfloor]$ Recursively compute max. subarray S_2 in $A[\lfloor \frac{n}{2} \rfloor + 1, n - 1]$ Compute maximum subarray S_3 that crosses midpoint **return** Heaviest of the three subarrays S_1, S_2, S_3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires O(n) time
- Identical to Merge Sort, runtime $O(n \log n)!$