
Lectures 6 and 7: Merge-sort and Maximum
Subarray Problem

COMS10007 - Algorithms

Dr. Christian Konrad

18.01.2019

Dr. Christian Konrad Lectures 6 and 7 1 / 22

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case and average-case runtime O(n2)

Surely we can do better?!

Dr. Christian Konrad Lectures 6 and 7 2 / 22

Insertion sort in Practice on Worst-case Instances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

secs

n 46929 102428 364178 1014570

secs 1.03084 4.81622 61.2737 497.879

Dr. Christian Konrad Lectures 6 and 7 3 / 22

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr. Christian Konrad Lectures 6 and 7 4 / 22

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr. Christian Konrad Lectures 6 and 7 5 / 22

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr. Christian Konrad Lectures 6 and 7 6 / 22

Example: Merge Operation

1 4 9 10 3 5 7 11A

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 3 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 3 4 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 3 4 5 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 3 4 5 7 5 7 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Example: Merge Operation

1 3 4 5 7 9 10 11A

1 4 9 10B

3 5 7 11C

Dr. Christian Konrad Lectures 6 and 7 7 / 22

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr. Christian Konrad Lectures 6 and 7 8 / 22

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, b n

2
c]←MergeSort(A[0, b n

2
c])

A[b n
2
c+1, n−1]←MergeSort(A[b n

2
c+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr. Christian Konrad Lectures 6 and 7 9 / 22

Analyzing MergeSort: An Example

Dr. Christian Konrad Lectures 6 and 7 10 / 22

Analyzing MergeSort: An Example

Dr. Christian Konrad Lectures 6 and 7 10 / 22

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr. Christian Konrad Lectures 6 and 7 11 / 22

Number of Levels

Dr. Christian Konrad Lectures 6 and 7 12 / 22

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is d n
2i−1 e (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: d n
2l−1 e = 1

n

2l−1
≤ 1⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: d n
2l−2 e = 2

n

2l−2
> 1⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = dlog ne+ 1 .

Dr. Christian Konrad Lectures 6 and 7 13 / 22

Runtime of Merge Sort

Sum up Work:

Levels:
l = dlog ne+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most d n

2i−1 e

Worst-case Runtime:

dlog ne+1∑
i=1

2i−1O
(
d n

2i−1
e
)

=

dlog ne+1∑
i=1

2i−1O
(n

2i−1

)

=

dlog ne+1∑
i=1

O (n) = (dlog ne+ 1)O(n) = O(n log n) .

Dr. Christian Konrad Lectures 6 and 7 14 / 22

Merge sort in Practice on Worst-case Instances

 0

 0.5

 1

 1.5

 2

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

secs

n 46929 102428 364178 1014570

secs 1.03084 4.81622 61.2737 497.879 (Insertion-sort)
secs 0.007157 0.015802 0.0645791 0.169165 (Merge-sort)

Dr. Christian Konrad Lectures 6 and 7 15 / 22

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr. Christian Konrad Lectures 6 and 7 16 / 22

Stability and In Place Property?

Stability and In Place Property?

Merge sort is stable

Merge sort does not sort in place

Dr. Christian Konrad Lectures 6 and 7 17 / 22

Maximum Subarray Problem

Buy Low, Sell High Problem

Input: An array of n integers

Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j]− A[i] is
maximized

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

Dr. Christian Konrad Lectures 6 and 7 18 / 22

Maximum Subarray Problem

Buy Low, Sell High Problem

Input: An array of n integers

Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j]− A[i] is
maximized

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16
 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

Dr. Christian Konrad Lectures 6 and 7 18 / 22

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr. Christian Konrad Lectures 6 and 7 19 / 22

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr. Christian Konrad Lectures 6 and 7 19 / 22

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr. Christian Konrad Lectures 6 and 7 20 / 22

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr. Christian Konrad Lectures 6 and 7 21 / 22

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr. Christian Konrad Lectures 6 and 7 22 / 22

