
Advanced topics in TCS

Exercise sheet 6.
Insertion-deletion Graph Streams

Christian Konrad

This exercise sheet addresses a framework for designing insertion-deletion streaming
algorithms for various graph problems including Maximum Matching, Minimum Vertex
Cover, and Minimum Dominating Set. In exercise 1, we will describe the framework applied
to the Maximum Matching problem and prove properties about the framework. We will
then extend the framework to other problems in the subsequent exercises. Exercise two
is difficult, and exercise three is optional (and very interesting!).

Question 1. Framework applied to Maximum Matching

Denote by V the vertex set of the input with |V | = n and assume that V is known prior to
the processing of the insertion-deletion graph stream. Let α ≤ 1 be a parameter related
to the desired approximation guarantee. The algorithm Insertion-Deletion-Match
proceeds as follows:

1. Pre-processing: Arbitrarily partition V into sets V1, V2, . . . , Vnα such that |Vi| =
1
α

, for every i (for simplicity we assume that nα and 1
α

are integers)

2. While processing the stream: For every pair (i, j) ∈ {1, . . . , nα}2 with i ≤ j,
compute one arbitrary edge with one endpoint in Vi and the other endpoint in Vj
if there is one. Denote this edge by eij and if no such edge exists let eij = ⊥.

3. Post-processing: Let F = {eij : (i, j) ∈ {1, . . . , nα}2 with i ≤ j and eij 6=
⊥}. Let M ← Greedy(F) be the matching obtained by running the Greedy
matching algorithm on an arbitrary ordering of the edges F and return M

Algorithm 1. Insertion-Deletion-Match

1. Argue that step 2 can be implemented using the l0-samplers discussed in the lecture
(slide 6 in lecture 13).

Solution:

1

Let f ∈ {0, 1}(
n
2) be the vector described by the dynamic graph stream in

the algorithm. In step 2, for each pair (i, j), let fij be the vector which
corresponds to the entries of f that represent the edges with endpoints in both
Vi and Vj. Observe that processing only the items of the stream whose edges
have endpoints in both Vi and Vj simulates a graph stream that describes fij.

Using an l0-sampler on these implicitly defined streams for each (i, j) gives a
randomly sampled non-zero entry from fij to get the desired edge eij, if one
exists.

2. How many l0-samplers overall does the algorithm use?

Solution:

Step 2 requires an l0-sampler for each pair (i, j) ∈ {1, 2, ..., αn}2 with i ≤ j.
Hence, (

αn

2

)
+ αn =

αn(αn− 1)

2
+ αn =

αn(αn+ 1)

2
= Θ((αn)2)

l0-samplers are used by the algorithm overall.

3. Suppose that our aim is to achieve that none of the l0-samplers fails with probability
at least 1 − 1

n
. How do we have to set the individual error probabilities δ in the

l0-samplers in order to achieve this?

Solution:

Observe that

Pr[none of the l0 samplers errs] = 1− Pr[at least one l0 sampler errs] .

Therefore, it suffices to find some error probability δ such that
Pr[at least one l0 sampler errs] is at most 1

n
. By the union bound,

Pr[at least one l0 sampler errs] ≤

αn(αn+1)
2∑
i=1

δ =
αn(αn+ 1)δ

2
≤ 1

n
.

Therefore, we can choose any δ such that

δ ≤ 2

αn2(αn+ 1)
.

4. Use the two previous exercises to bound the space requirements of the resulting
algorithm.

2

Solution:

(a) The arbitrary partition of V into sets V1, . . . , Vnα can be stored using
O(n log(nα)) bits (indicating for each vertex to which group it belongs).

(b) Θ(α2n2) l0-samplers are used, each of which requires O(log2 n log 1
δ
) =

O(log3 n) bits of space with error probability δ = n−5. Overall, this
step requires O(α2n2 log3 n) bits of space.

(c) Running the Greedy matching algorithm on the edges outputted by
the l0-samplers finds the matching M . Since M is a subset of the edges
F , the space required for M is smaller than the space required for
storing the l0-samplers.

The algorithm thus requires O(α2n2 log3 n+ n log(αn)) bits of space.

5. Prove that the approximation factor of the algorithm is at least α/2. One way to
do this is to use a charging scheme: First, charge every edge of a fixed maximum
matching M∗ in G to a sampled edge eij. Then, if a charged edge eij is not included
in the matching M then transfer the charge of eij to the edge that prevented eij
from being added to M∗. The result then follows by bounding the maximum charge
that an edge of M has received.

Solution:

As in the statement of the algorithm, let F denote the set of edges eij and
let M be the matching computed by Greedy on F . We will prove that
|M | ≥ α

2
|M∗| with the following charging argument:

Let e = uv ∈M∗ be an edge with u ∈ Vi and v ∈ Vj. Then, we charge edge e
to the edge eij (with a charge of “1” unit). Observe that, in doing so, overall
we have charged |M∗| units of charge to the edges in F . Next, consider the
matching M computed by Greedy. For every charged edge eij ∈ F \M ,
we transfer its charge to the at most two edges in M that prevented eij from
being added to M . We have now established that a charge of at least |M∗| is
located at the edges in M .
Last, we bound the maximum charge received by an edge in M . Consider
thus an edge eij ∈M . This edge can only receive charge from optimal edges
with endpoints in Vi or Vj. Since there are at most 2/α such optimal edges,
the maximum charge of an edge is therefore 2/α. Hence:

2

α
|M | ≥ |M∗| ,

which implies the result.

3

Question 2. Extending the Framework to Minimum
Vertex Cover (difficult!)

A vertex cover in a graph G = (V,E) is a subset of vertices V ′ ⊆ V such that every
edge e ∈ E has at least one endpoint in V ′, i.e., if e = uv then either u ∈ V ′, v ∈ V ′,
or both u, v ∈ V ′ holds. A minimum vertex cover is one of smallest size. Observe that
the Minimum Vertex Cover problem is a minimization problem as opposed to Maximum
Matching, which is a maximization problem.

Use the previous framework (i.e., the idea of working with vertex groups rather than
individual vertices) to obtain an α-approximation (for α > 1) algorithm for Minimum
Vertex Cover. We say that a vertex cover I is an α-approximation if:

|I| ≤ α|OPT | ,

where OPT is a minimum vertex cover. What are the space requirements of your algo-
rithm? Can you prove that it is correct?

Solution:

Please see Section 4.3. of this paper:

https://arxiv.org/pdf/2005.11116.pdf

The result in this paper is stated as an nε-approximation and proves a space bound
of O(n2−2ε log n) for such an approximation. Denoting the approximation factor by
α and setting α = nε, the result implies a space bound of O(n2 log n/α2).

Question 3. Extending the Framework to Minimum
Dominating Set (optional)

A dominating set in a graph G = (V,E) is a subset of vertices D ⊆ V such that every
vertex outside D is adjacent to a vertex in D, i.e., for every v ∈ V \D, Γ(v) ∩D 6= ∅,
where Γ(v) denotes the neighborhood of v. A minimum dominating set is one of smallest
size.

Adapt the framework such that an α-approximate dominating set can be computed
in space Õ(n2/α), where the Õ(.) notation supresses poly-logarithmic factors.

4

https://arxiv.org/pdf/2005.11116.pdf

