Advanced topics in TCS

Exercise sheet 6.
Insertion-deletion Graph Streams

Christian Konrad

This exercise sheet addresses a framework for designing insertion-deletion streaming
algorithms for various graph problems including Maximum Matching, Minimum Vertex
Cover, and Minimum Dominating Set. In exercise 1, we will describe the framework applied
to the Maximum Matching problem and prove properties about the framework. We will
then extend the framework to other problems in the subsequent exercises. Exercise two
is difficult, and exercise three is optional (and very interesting!).

Question 1. Framework applied to Maximum Matching

Denote by V' the vertex set of the input with |V| = n and assume that V' is known prior to
the processing of the insertion-deletion graph stream. Let @ < 1 be a parameter related
to the desired approximation guarantee. The algorithm INSERTION-DELETION-MATCH
proceeds as follows:

1. Pre-processing: Arbitrarily partition V into sets Vi, Va, ..., V,, such that |V;| =
é, for every i (for simplicity we assume that na and é are integers)

2. While processing the stream: For every pair (i,5) € {1,...,na}? with i < j,
compute one arbitrary edge with one endpoint in V; and the other endpoint in V;
if there is one. Denote this edge by e;; and if no such edge exists let e;; = L.

3. Post-processing: Let F' = {e;; : (i,7) € {1,...,na}? withi < j and ¢;; #
1}. Let M < GREEDY(F') be the matching obtained by running the GREEDY
matching algorithm on an arbitrary ordering of the edges F' and return M

Algorithm 1. INSERTION-DELETION-MATCH

1. Argue that step 2 can be implemented using the [p-samplers discussed in the lecture
(slide 6 in lecture 13).

2. How many [g-samplers overall does the algorithm use?

3. Suppose that our aim is to achieve that none of the ly-samplers fails with probability
at least 1 — % How do we have to set the individual error probabilities J in the

lo-samplers in order to achieve this?

4. Use the two previous exercises to bound the space requirements of the resulting
algorithm.

5. Prove that the approximation factor of the algorithm is at least a/2. One way to
do this is to use a charging scheme: First, charge every edge of a fixed maximum
matching M* in G to a sampled edge e;;. Then, if a charged edge e;; is not included
in the matching M then transfer the charge of e;; to the edge that prevented e;;
from being added to M*. The result then follows by bounding the maximum charge
that an edge of M has received.

Question 2. Extending the Framework to Minimum
Vertex Cover (difficult!)

A wvertex cover in a graph G = (V, E) is a subset of vertices V' C V such that every
edge e € I has at least one endpoint in V', i.e., if e = wv then either u € V', v € V’,
or both u,v € V' holds. A minimum vertex cover is one of smallest size. Observe that
the Minimum Vertex Cover problem is a minimization problem as opposed to Maximum
Matching, which is a maximization problem.

Use the previous framework (i.e., the idea of working with vertex groups rather than
individual vertices) to obtain an a-approximation (for a > 1) algorithm for Minimum
Vertex Cover. We say that a vertex cover [is an a-approximation if:

1| < alOPT],

where OPT is a minimum vertex cover. What are the space requirements of your algo-
rithm? Can you prove that it is correct?

Question 3. Extending the Framework to Minimum
Dominating Set (optional)

A dominating set in a graph G = (V, F) is a subset of vertices D C V such that every
vertex outside D is adjacent to a vertex in D, i.e., for every v € V' \ D, I'(v) N D # @,
where I'(v) denotes the neighborhood of v. A minimum dominating set is one of smallest
size.

Adapt the framework such that an a-approximate dominating set can be computed
in space O(n?/a), where the O(.) notation supresses poly-logarithmic factors.

