Advanced topics in TCS

Exercise sheet 4. Minimum spanning tree, Testing k-connectivity

Christian Konrad

Question 1. Minimum Spanning Tree (MST)

We consider a weighted graph G = (V, E, w), where $w : E \to \mathbb{N}$ is an edge weight function. A *minimum spanning tree* $F \subseteq E$ in G is a spanning tree in G of minimum weight, i.e., the sum of its edge weights is as small as possible.

We consider the streaming edge-arrival model where the edges arrive together with their weights. More specifically, the input stream consists of a sequence of tuples $(e_i, w(e_i))_i$, where $w(e_i)$ is the weight of edge e_i .

1. Give a 1-pass semi-streaming algorithm for computing an MST.

Hint: Adapt the spanning tree algorithm from the lecture.

2. Let E_i be the first *i* edges in the stream, $G_i = (V, E_i, w|_{E_i})$ (where $w|_{E_i}$ denotes the weight function *w* restricted to the domain E_i), and let F_i denote the collection of edges stored by the algorithm given in the previous exercise after iteration *i*. Prove by induction that F_i is a MST in G_i .

The following property may be useful:

Lemma 1. Let $T \subseteq E$ be a spanning tree in a weighted graph G = (V, E, w). Then, if T is not a minimum spanning tree, then there exists an edge $e \in E \setminus T$ such that w(e) < w(f), for at least one edge f different to e in the unique cycle in $T \cup \{e\}$.

Question 2. Deciding k-Connectivity

We say that a graph G is k-connected if we need to remove at least k edges from G in order to disconnect G.

Consider the following algorithm for deciding k-connectivity of a graph:

- 1. $F_1, F_2, \ldots, F_k \leftarrow \emptyset$
- 2. For each edge e in the stream: If there is an $i \in \{1, \ldots, k\}$ such that $F_i \cup \{e\}$ has no cycle then add e to F_i (if there are multiple such i then pick only one, ties can be broken arbitrarily)
- 3. Post-processing: Let $F = \bigcup_{i=1}^{k} F_i$

If (V,F) is k-connected then \mathbf{return} "G is k-connected ", otherwise \mathbf{return} "G is not k-connected"

Algorithm 1.

- 1. How much space does Algorithm 1 use (as a function of n and k)?
- 2. Prove that the algorithm is correct.