Advanced topics in TCS

Exercise sheet 2.

Majority, Misra-Gries, Counting
Raphagl Clifford

For the implementation questions, please use any language of your choos-
ing. The snippets I give are in Python. None of the code should take long
to implement and doing so I hope will help clarify the algorithms.
Question 1.

1. Implement the majority algorithm as a function majority() and test

your code on two different inputs. Example inputs:

o AJAACCBBCCCBCC
o AAABBBC

2. Implement the second pass method as a function majoritysecondpass|()
to check your answers are correct.

Check to see if alpha is really the majority item
def majoritysecondpass(sequence, alpha):
missing code
if count > m/2:
print (alpha, "is the majority item")
else:
print(alpha, "is not the majority item")

majoritysecondpass ("AAABBBC", "C")

Raphaél Clifford

Question 2. Misra-Gries
Implement the Misra-Gries algorithm as a function misragries(). Test your
code on two different inputs with different values of k. Example inputs:

o ACABACBB
o AAACCBBCCCBCCAAC

def misragries(sequence, k):
missing code
return S

for k in range(l, 5):
print (misragries ("ACABACBB", k))

for k in range(l, 7):
print("k=",k, misragries("AAACCBBCCCBCC", k))

Question 3.

Let m be the sum of all counters maintained by the Misra-Gries algorithm
after it has processed an input stream, i.e., m = Zeekeys(A) All]. Prove that
the bound from the lecture notes can be sharpened to

fi—

m—m A

S fis
Question 4. Heavy hitters
Items that occur with high frequency in a dataset are sometimes called heavy
hitters. Accordingly, let us define the HEAVY-HITTERS problem, with real
parameter € > 0, as follows. The input is a stream o. Let m,n, f have their
usual meanings. Let

HH.(o) ={j € [n]: f; > em}

be the set of e-heavy hitters in 0. Modify Misra-Gries to obtain a one-pass
streaming algorithm that outputs this set “approximately” in the following
sense: the set H it outputs should satisfy

HH.(0) € H C HH,5(0)

Your algorithm should use O (¢~ *(logm + logn)) bits of space.

Raphaél Clifford

Question 5. Misra-Gries

Suppose we have run the (one-pass) Misra-Gries algorithm on two streams
o1 and o0y, thereby obtaining a summary for each stream consisting of k
counters. Consider the following algorithm for merging these two summaries
to produce a single k-counter summary.

1. Combine the two sets of counters, adding up counts for any common
items.

2. If more than k counters remain:

(a) ¢« value of (k+1) th counter, based on decreasing order of value.

(b) Reduce each counter by ¢ and delete all keys with non-positive
counters.

Prove that the resulting summary is good for the combined stream oy o o9
(here o denotes concatenation of streams) in the sense that frequency esti-
mates obtained from it satisfy the bounds from Question 3., where m is the
combined length of the two streams.

Question 6.
This question is about the HyperLogLog (HLL) algorithm. You may find it
helpful to refer to this paper (clickable link) and in particular Figure 1.
Randomised cardinality estimators are always described in academic con-
texts in terms of pairwise independent hash function. However, in practice a
non-random hash function such as MD5 of SHA256 can be used instead and
may be more practical in some circumstances. HLL turns out to be one of
those situations. The explanation below will use the MD5 hash although we
will only use the first 32 bits of the hash.

1. First pick a small positive integer p. For this experiment we can set
p=5.
2. Initialise an array M of length 2P to be all zeros.

3. For each token in the stream:

(a) Compute the MD5 hash of the token. Look at the first p bits in
the hash, convert it into an integer and call this idx.

(b) Starting at the p + 1th bit of the hash we just computer, count
the number of leading zeros and call this p. If there are more than
32 — p leading zeros then set p = 32 — p.

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/40671.pdf

Raphaél Clifford

(c) If p+ 1> Mlidz], set M[idz] = p+ 1.

In order to get the full binary representation of a 128-bit MD5 hash you
can use:

import hashlib
bin(int. from_bytes(hashlib.md5(x.encode()).digest(),
"little"))[2:].2z£i11(128)
The method so far looks similar to the Tidemark algorithm although
using the MD5 hash as a proxy for random bits. The main sophistication is
in how these 2P different estimates are combined. The method described in
the original paper is as follows:

1. Let m = 2P.

2. Compute o, = (m [(logy (31%))™ du)_1

-1
3. The cardinality esimate is £ = «,,m? (Z;”:_Ol 2—M [J]) :

Implement the HyperLogLog algorithm and try it on simulated data. In
Python this will make some suitable random data.

rangeofvals = 20000
random.choices ([*map(str, range(rangeofvals))], k = 5000)

You can use ags ~ 0.69712 or your code can numerically compute the
integral using scipy . integrate.

Question 7.

The linked paper has some corrections for cases where the estimate is very
small or large. If you have not done so already, implement these corrections
and add them to your HyperLoglLog code.

