

Advanced Algorithms – COMS31900

Probability recap.

Raphaël Clifford

Slides by Markus Jalsenius

Randomness and probability

The sample space S is the set of *outcomes* of an experiment.

University of

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES -

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}.$

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$. Flip a coin: $S = \{H, T\}$.

University of BRISTOL

The sample space S is the set of *outcomes* of an experiment.

University of BRISTOL

The sample space S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

University of

The sample space S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

The sample space S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

University of BR ISTOI

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE
Roll a die:
$$S = \{1, 2, 3, 4, 5, 6\}$$
.
 $Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = \frac{1}{6}$.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

The sample space S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

The sample space S is the set of *outcomes* of an experiment.

Flip a coin:
$$S = \{H, T\}$$
.
 $Pr(H) = Pr(T) = \frac{1}{2}$.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

The sample space S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

University of

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE Amount of money you can win when playing some lottery: $S = \{ \pounds 0, \pounds 10, \pounds 100, \pounds 1000, \pounds 100, 000 \}.$ $\Pr(\pounds 0) = 0.9, \ \Pr(\pounds 10) = 0.08, \ \dots, \ \Pr(\pounds 100, 000) = 0.0001.$

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.

The sample space is not necessarily *finite*.

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up

The sample space is not necessarily *finite*.

Flip a coin until first tail shows up:

 $S = \{\mathsf{T}, \mathsf{H}\mathsf{T}, \mathsf{H}\mathsf{H}\mathsf{T}, \mathsf{H}\mathsf{H}\mathsf{H}\mathsf{T}, \mathsf{H}\mathsf{H}\mathsf{H}\mathsf{H}\mathsf{T}, \mathsf{H}\mathsf{H}\mathsf{H}\mathsf{H}\mathsf{H}\mathsf{T}, \ldots \}.$

The sample space is not necessarily *finite*.

Flip a coin until first tail shows up: $S = \{T, HT, HHT, HHHT, HHHHT, HHHHT, ... \}.$ Pr("It takes n coin flips") $= (\frac{1}{2})^n$, and

The sample space is not necessarily *finite*.

Fip a coin until first tail shows up: $S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHT}, \ldots \}.$ $\Pr(``It takes n coin flips") = \left(\frac{1}{2}\right)^n, \text{ and}$ $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$

The sample space is not necessarily *finite*.

Flip a coin until first tail shows up: $S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHT}, \ldots \}.$ $\Pr(\text{"It takes } n \text{ coin flips"}) = \left(\frac{1}{2}\right)^n, \text{ and}$ $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \ldots$

The sample space is not necessarily *finite*.

Flip a coin until first tail shows up: $S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHT}, \ldots \}.$ $\Pr(``It takes n coin flips") = \left(\frac{1}{2}\right)^n, \text{ and}$ $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \ldots = 1$

An **event** is a subset V of the sample space S.

An event is a subset V of the sample space S.

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

An event is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

Flip a coin 3 times: $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{HHT}, \text{HTH}, \text{HHH}\}$ For each $x \in S$, $\Pr(x) = \frac{1}{8}$

An event is a subset V of the sample space S.

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

An event is a subset V of the sample space S.

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

An event is a subset V of the sample space S.

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

An event is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

Fip a coin 3 times: $S = \{\text{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH}\}$ For each $x \in S$, $\Pr(x) = \frac{1}{8}$ Define V to be the event "the first and last coin flips are the same" in other words, $V = \{\text{HHH, HTH, THT, TTT}\}$ What is $\Pr(V)$? $\Pr(V) = \Pr(\text{HHH}) + \Pr(\text{HTH}) + \Pr(\text{THT}) + \Pr(\text{TTT}) = 4 \times \frac{1}{8} = \frac{1}{2}$.

The probability of
$$Y$$
 taking value y is $\Pr(Y = y) = \sum \Pr(x)$.
 $\{x \in S \text{ st. } Y(x) = y\}$

The probability of
$$Y$$
 taking value y is $\Pr(Y = y) = \sum \Pr(x)$.
 $\{x \in S \text{ st. } Y(x) = y\}$

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $Pr(Y = y) = \sum Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$ EXAMPLE sum over all values of x such that Y(x) = yTwo coin flips. SYWhat is $\Pr(Y=2)$? 2 ΗH ΗT 1 $\Pr(Y=2) = \sum_{x \in \{1,...,T\}} \Pr(x) = \frac{1}{4} + \frac{1}{4}$ ΤH 5 $x \in \{HH, TT\}$ 2

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $Pr(Y = y) = \sum Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$ EXAMPLE sum over all values of x such that Y(x) = yTwo coin flips. SYWhat is $\Pr(Y=2)$? 2 ΗH $\Pr(Y=2) = \sum_{x \in \{x,y,z^*\}} \Pr(x) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ ΗT 1 ΤH 5 $x \in \{HH, TT\}$ 2

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $Pr(Y = y) = \sum Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$ EXAMPLE sum over all values of x such that Y(x) = yTwo coin flips. SYWhat is $\Pr(Y=2)$? 2 ΗН $\Pr(Y=2) = \sum_{x \in \{x,y,z\}} \Pr(x) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ 1 ΗT тн 5 $x \in \{HH, TT\}$ 2 $\Pr(Y=2) = \frac{1}{2}$

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of
$$Y$$
 taking value y is $\Pr(Y = y) = \sum \Pr(x)$.
 $\{x \in S \text{ st. } Y(x) = y\}$

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of
$$Y$$
 taking value y is $\Pr(Y = y) = \sum \Pr(x)$.
 $\{x \in S \text{ st. } Y(x) = y\}$

The **expected value** (the mean) of a r.v. Y, denoted $\mathbb{E}(Y)$, is

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x).$$

A random variable (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of
$$Y$$
 taking value y is $\Pr(Y = y) = \sum \Pr(x)$.
 $\{x \in S \text{ st. } Y(x) = y\}$

The **expected value** (the mean) of a r.v. Y, denoted $\mathbb{E}(Y)$, is

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x).$$

$$\mathbb{E}(Y) = \left(2 \cdot \frac{1}{2}\right) + \left(1 \cdot \frac{1}{4}\right) + \left(5 \cdot \frac{1}{4}\right) = \frac{7}{2}$$

Linearity of expectation

Linearity of expectation

Linearity of expectation **always** holds,

Linearity of expectation

Linearity of expectation **always** holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

Linearity of expectation always holds,

Linearity of expectation

Linearity of expectation **always** holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

Linearity of expectation

Linearity of expectation **always** holds,

Linearity of expectation

Linearity of expectation always holds,

Linearity of expectation

Linearity of expectation always holds,

Linearity of expectation

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. What is $\mathbb{E}(Y)$? **Approach 1:** *(without the theorem)* The sample space $S = \{(1, 1), (1, 2), (1, 3) \dots (6, 6)\}$ (36 outcomes) $\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x)$

Linearity of expectation

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. What is $\mathbb{E}(Y)$? **Approach 1:** *(without the theorem)* The sample space $S = \{(1, 1), (1, 2), (1, 3) \dots (6, 6)\}$ (36 outcomes) $\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x)$

Linearity of expectation

Linearity of expectation **always** holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. **Approach 1:** *(without the theorem)* The sample space $S = \{(1, 1), (1, 2), (1, 3) \dots (6, 6)\}$ (36 outcomes) $\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x) = \frac{1}{36} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + 1 \cdot 12)$

Linearity of expectation

Linearity of expectation **always** holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. **Approach 1:** (without the theorem) The sample space $S = \{(1, 1), (1, 2), (1, 3) \dots (6, 6)\}$ (36 outcomes) $\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x) = \frac{1}{36} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + 1 \cdot 12) = 7$

Linearity of expectation

Linearity of expectation **always** holds,

Linearity of expectation

Linearity of expectation always holds,

Linearity of expectation

Linearity of expectation always holds,

Linearity of expectation

Linearity of expectation **always** holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. What is $\mathbb{E}(Y)$? Approach 2: *(with the theorem)* Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second $\mathbb{E}(Y_1) = \mathbb{E}(Y_2) = 3.5$

Linearity of expectation

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

Roll two dice. Let the r.v. Y be the sum of the values. What is $\mathbb{E}(Y)$? Approach 2: *(with the theorem)* Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second $\mathbb{E}(Y_1) = \mathbb{E}(Y_2) = 3.5$ so $\mathbb{E}(Y) = \mathbb{E}(Y_1 + Y_2) = \mathbb{E}(Y_1) + \mathbb{E}(Y_2) = 7$

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = 0 \cdot \Pr(I = 0) + 1 \cdot \Pr(I = 1) = \Pr(I = 1).$

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that

I = 1 if the event happens (and I = 0 otherwise).

An indicator random variable is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE Roll a die n times. What is the expected number rolls that show a value that is at least the value of the previous roll?

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLERoll a die n times.What is the expected number rolls that show a value
that is at least the value of the previous roll?For $j \in \{2, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the value of the jth roll
is at least the value of the previous roll (and $I_j = 0$ otherwise)

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLERoll a die n times.What is the expected number rolls that show a value
that is at least the value of the previous roll?For $j \in \{2, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the value of the jth roll
is at least the value of the previous roll (and $I_j = 0$ otherwise) $\Pr(I_j = 1) = \frac{21}{36} = \frac{7}{12}$. (by counting the outcomes)

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that

I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

Linearity of Expectation Let Y_1, Y_2, \ldots, Y_k be k random variables. Then $\mathbb{E}\left(\sum_{i=1}^k Y_i\right) = \sum_{i=1}^k \mathbb{E}(Y_i)$ of the jth roll revious roll (and $I_j = 0$ otherwise) $\Pr(I_j = 1) = \frac{21}{36} = \frac{7}{12}$ (by counting the outcomes) $E\left(\sum_{j=2}^n I_j\right) = \sum_{j=2}^n \mathbb{E}(I_j) = \sum_{j=2}^n \Pr(I_j = 1) = (n-1) \cdot \frac{7}{12}$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

Often an indicator r.v. I is associated with an event such that I = 1 if the event happens (and I = 0 otherwise).

Indicator random variables and linearity of expectation work great together!

Markov's inequality

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

```
It then follows that at most
```

```
\frac{1}{2} of all cars drive at least 120 mph,
```


EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

 $\frac{1}{2}$ of all cars drive at least 120 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph.

It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

From the example above:

▶ $\Pr(\text{speed of a random car} \geq 120 \text{ mph}) \leq \frac{60}{120} = \frac{1}{2}$,

 $\Pr(\text{speed of a random car} \ge 90 \text{mph}) \le \frac{60}{90} = \frac{2}{3}.$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

University of BR ISTOI

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$),

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$),

 $\Pr(5 \text{ or more people leaving with their own hats}) \leq \frac{1}{5}$,

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$),

 $\Pr(5 \text{ or more people leaving with their own hats}) \leq \frac{1}{5},$ $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$),

 $\Pr(5 \text{ or more people leaving with their own hats}) \leq \frac{1}{5},$

 $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

(sometimes Markov's inequality is not particularly informative)

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat, otherwise $I_j = 0$.

By linearity of expectation...

$$\mathbb{E}\Big(\sum_{j=1}^{n} I_j\Big) = \sum_{j=1}^{n} \mathbb{E}(I_j) = \sum_{j=1}^{n} \Pr(I_j = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$),

$$\begin{split} \Pr(\text{5 or more people leaving with their own hats}) &\leq \frac{1}{5}, \\ \Pr(\text{at least 1 person leaving with their own hat}) &\leq \frac{1}{1} = 1. \\ \textit{(sometimes Markov's inequality is not particularly informative)} \\ \textit{In fact, here it can be shown that as } n \to \infty, \textit{ the probability that at least} \\ \textit{one person leaves with their own hat is } 1 - \frac{1}{e} \approx 0.632. \end{split}$$

University of BRISTOL

If X is a non-negative r.v. that only takes integer values, then $\Pr(X > 0) = \Pr(X \ge 1) \le \mathbb{E}(X)$.

For an indicator r.v. I, the bound is tight (=), as $\Pr(I > 0) = \mathbb{E}(I)$.

University of BRISTOL

Union bound

Г ТНЕОREM (union bound) —

Let V_1,\ldots,V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

University of BRISTOL

University of BRISTOL

Union bound

Г ТНЕОREM (union bound) —

Let V_1,\ldots,V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

THEOREM (union bound) Let V_1, \ldots, V_k be k events. Then $\Pr\left(\bigcup_{i=1}^k V_i\right) \leq \sum_{i=1}^k \Pr(V_i).$

This bound is tight (=) when the events are all disjoint.

(V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

University of BRISTOL

University of BRISTOL

THEOREM (union bound) Let V_1, \ldots, V_k be k events. Then $\Pr\left(\bigcup_{i=1}^k V_i\right) \leq \sum_{i=1}^k \Pr(V_i).$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

THEOREM (union bound) -

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$.

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$. Let the r.v. $X = \sum_{j=1}^{k} I_j$ be the number of events that happen.

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$. Let the r.v. $X = \sum_{j=1}^k I_j$ be the number of events that happen. $\Pr\left(\bigcup_{j=1}^k V_j\right) = \Pr(X > 0) \le \mathbb{E}(X) = \mathbb{E}(\sum_{j=1}^k I_j) = \sum_{j=1}^k \mathbb{E}(I_j)$ $= \sum_{j=1}^k \Pr(V_j)$

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$. Let the r.v. $X = \sum_{j=1}^{k} I_j$ be the number of events that happen. $\Pr\left(\bigcup_{j=1}^{k} V_j\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}(\sum_{j=1}^{k} I_j) = \sum_{j=1}^{k} \mathbb{E}(I_j)$ by previous Markov corollary $= \sum_{j=1}^{k} \Pr(V_j)$

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$. Let the r.v. $X = \sum_{j=1}^{k} I_j$ be the number of events that happen. $\Pr\left(\bigcup_{j=1}^{k} V_j\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_j\right) = \sum_{j=1}^{k} \mathbb{E}(I_j)$ by previous Markov corollary Linearity of expectation

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j = 0$. Let the r.v. $X = \sum_{j=1}^{k} I_j$ be the number of events that happen. $\Pr\left(\bigcup_{j=1}^{k} V_j\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_j\right) = \sum_{j=1}^{k} \mathbb{E}(I_j)$ by previous Markov corollary Linearity of expectation

THEOREM (union bound) Let V_1, \ldots, V_k be k events. Then $\Pr\left(\bigcup_{i=1}^k V_i\right) \leq \sum_{i=1}^k \Pr(V_i).$

This bound is tight (=) when the events are all disjoint.

(V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

University of BRISTOL

University of BRISTOL

THEOREM (union bound) -

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

EXAMPLE $S = \{1, \dots, 6\}$ is the set of outcomes of a die roll.

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

EXAMPLE $S = \{1, \dots, 6\}$ is the set of outcomes of a die roll. We define two events: $V_1 = \{3, 4\}$ $V_2 = \{1, 2, 3\}$

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

EXAMPLE $S = \{1, \dots, 6\}$ is the set of outcomes of a die roll. We define two events: $V_1 = \{3, 4\}$ $V_2 = \{1, 2, 3\}$ $\Pr(V_1 \cup V_2) \leq \Pr(V_1) + \Pr(V_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

EXAMPLE $S = \{1, \dots, 6\}$ is the set of outcomes of a die roll. We define two events: $V_1 = \{3, 4\}$ $V_2 = \{1, 2, 3\}$ $\Pr(V_1 \cup V_2) \le \Pr(V_1) + \Pr(V_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

University of BRISTOL

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

Union bound

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint. (V_i and V_j are disjoint iff $V_i \cap V_j$ is empty)

Typically the union bound is used when each $Pr(V_i)$ is *much* smaller than k.

University of BRISTOL

Summary

The sample space S is the set of *outcomes* of an experiment. For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$. An event is a subset V of the sample space S, $\Pr(V) = \sum_{x \in V} \Pr(x)$ A random variable (r.v.) Y is a function which maps $x \in S$ to $S(x) \in \mathbb{R}$ The probability of Y taking value y is $Pr(Y = y) = \sum Pr(x)$. $\{x \in S \text{ st. } Y(x) = u\}$ The expected value (the mean) of Y is $\mathbb{E}(Y) = \sum Y(x) \cdot \Pr(x)$. $x \in S$ An **indicator random variable** is a r.v. that can only be 0 or 1. Fact: $\mathbb{E}(I) = \Pr(I = 1)$. - THEOREM (Linearity of expectation) -- Тнеопем (union bound) — - Тнеопем (Markov's inequality) – If X is a non-negative r.v., then for all a > 0, Let Y_1, Y_2, \ldots, Y_k be k random variables then, Let V_1, \ldots, V_k be k events then, $\Pr\left(\bigcup_{i=1}^{\kappa} V_i\right) \leq \sum_{i=1}^{\kappa} \Pr(V_i).$ $\mathbb{E}\Big(\sum_{i=1}^{n}Y_i\Big)=\sum_{i=1}^{n}\mathbb{E}(Y_i)$ $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$.