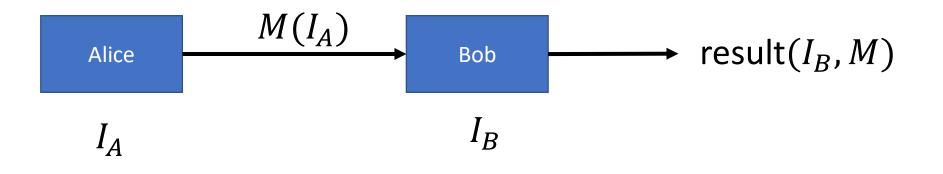
Advanced Topics in Theoretical Computer Science

Lecture 16

Randomized Communication Complexity

Deterministic Communication Complexity

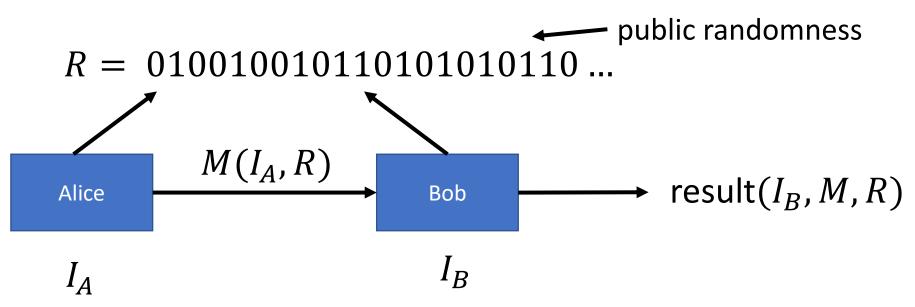
Deterministic Communication Complexity:



- M is a function of I_A
- Output is a function of M and I_B
- No randomization, same input \rightarrow same output
- Protocol successful on all inputs

Randomized Communication Complexity

Randomized Communication Complexity:



- Public Randomness: Parties have access to a shared random bit-string
- Protocol needs to succeed with proba. > $\frac{1}{2}$ over the public randomness
- Randomized CC $R_\epsilon(f)$ is minimum cost over all randomized communication protocols that succeed with probability at least $1-\epsilon$

Equality:

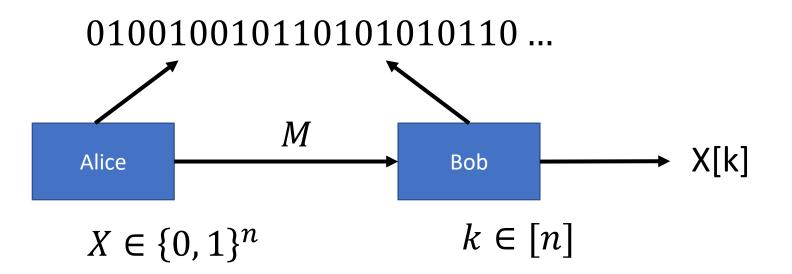
- Alice holds $X \in \{0, 1\}^n$, Bob holds $Y \in \{0, 1\}^n$
- They wish to compute the equality function:

EQ(X,Y) = 1, if X = Y, and EQ(X,Y) = 0 otherwise

Deterministic Communication Complexity: $D(EQ_n) = n$ (exercise!)

Randomized Communication Complexity: $R_{0.99}(EQ_n) = \Theta(\log n)$

- Alice and Bob compute a hash function $h: \{0, 1\}^n \to [\Theta(\log n)]$ using public randomness as seed for the hash function (see Adv. Alg.)
- It can be seen that protocol succeeds with probability at least 0.99.



Can we make use of the shared rand. bits to solve INDEX with message size o(n)?

Theorem. $R_{\frac{2}{3}}(\text{INDEX}_n) = \Omega(n)$

 \rightarrow Randomized one-pass streaming algorithms for Maximum Matching also require space $\Omega(n^2)$. (see previous lecture)

Protocols that are Good on Average

Lower Bounds for Randomized Protocols:

- Proving lower bunds for randomized protocols directly is difficult
- Yao's Lemma allows us to consider deterministic protocols instead, albeit using a different *quality guarantee*...

Deterministic Protocols: For every input (I_A, I_B) the protocol succeeds

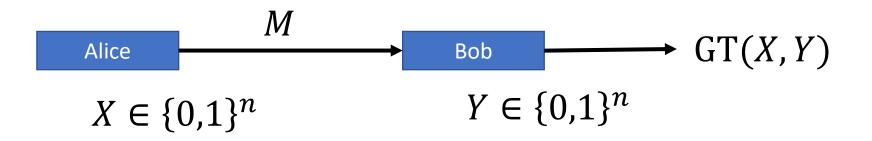
Deterministic Protocols that are Good on Average: Let μ be an input distribution so that $(I_A, I_B) \sim \mu$. A deterministic protocol P computes a function f up to error δ with respect to μ if

> $\mathbb{P}_{(I_A, I_B) \sim \mu}[P(I_A, I_B) \text{ fails}] \leq \delta.$ "Deterministic protocol with distributional error"

Distributional CC: δ -error μ -distributional deterministic communication complexity D^{μ}_{δ} is minimum cost of a protocol that satisfies previous inequality

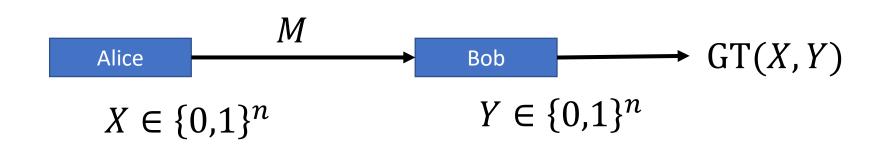
Greater-than (GT) function:

$$GT(x,y) = \begin{cases} 1, \text{ if } x \ge y \\ 0, \text{ otherwise} \end{cases}.$$



X, Y are binary representations of numbers in $\{0, 1, ..., 2^n - 1\}$

Deterministic CC: $D(GT_n) = n$.



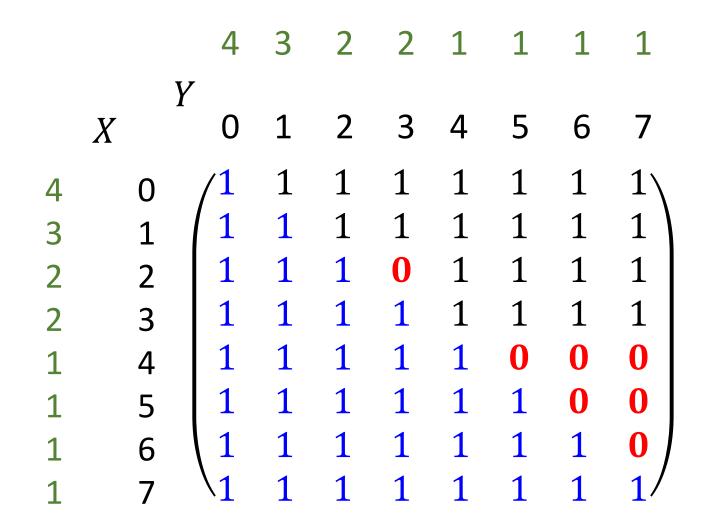
$\frac{1}{4}$ -error Uniform Distributional CC:

- Consider the uniform dist., where X, Y are chosen independently from $\{0, 1\}^n$
- Consider the following protocol: Alice sends position of her most significant bit MSB(X), i.e., position of left-most "1", and value n + 1 if X = 0 ... 0 (→ message of size [log(n + 1)])
- Bob outputs "1" if $MSB(X) \leq MSB(Y)$

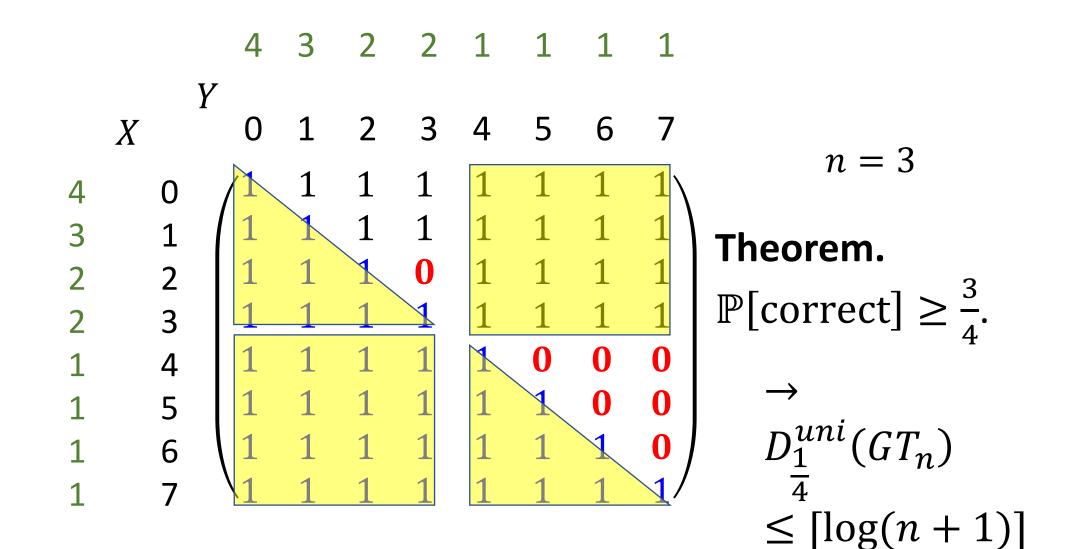
Example:

$$\begin{array}{l} X = 0 \ 1 \ 0 \ 1 \ \rightarrow MSB(X) = 2 \\ Y = 1 \ 0 \ 0 \ 1 \ \rightarrow MSB(Y) = 1 \end{array}$$

Output = 0 (correct)



n = 3



Yao's Lemma

Connecting Randomized CC to Deterministic CC with distributional Error

Yao's Lemma.

$$R_{\delta}(f) = \max_{\mu} D^{\mu}_{\delta}(f),$$

where max. is taken over all prob. distributions μ on the domain of f.

Recall:

- Randomized CC: probability of error at most δ on any input instance (randomness in random bits)
- Deterministic CC with distributional Error: probability of error at most δ (randomness over input distribution)

Theorem.
$$R_{\frac{1}{10}}(INDEX_n) = \Omega(n)$$

Proof.

- Let *P* be a randomized protocol for INDEX_n with cost cn = $R_{\frac{1}{10}}(INDEX_n)$ and error probability $\frac{1}{10}$, for some $c < \frac{1}{10}$
- We will prove that such a protocol does not exist in the following
- By Yao's Lemma, there exists a deterministic protocol Q for INDEX_n with $cost(Q) \le cn$ and dist. error proba. $\frac{1}{10}$ over the uniform distribution (i.e., $X \in \{0, 1\}^n$ and $k \in [n]$ are chosen uniformly at random)
- Since cost(Q) = cn, Q sends at most 2^{cn} different messages $M_1, M_2, \dots, M_{2^{cn}}$. Denote by M(x) the message sent by Alice when Alice holds input x.
- Denote by $out(M_i, k)$ the output produced by Bob when Bob's input is k and M_i is received. Let $out(M_i) = (out(M_i, 1), out(M_i, 2), ..., out(M_i, n))$ be the output vector of length n

Proof. (continued)

- Denote by M_i^{-1} the set of Alice's inputs on which she sends message M_i to Bob - Let $x \in M_i^{-1}$. Then:

$$\mathbb{P}[\operatorname{error} | X = x] = \frac{d_{H}(x, out(M_{i}))}{n},$$

where $d_H(a, b)$ denotes the Hamming distance (number of positions where the two strings are not equal) between a and b.

- We thus obtain:

$$\mathbb{P}[error] = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \mathbb{P}[error \mid X = x] = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \frac{d_H(x, out(M(x)))}{n}.$$

Proof. (continued)

- Let $out = {out(M_i) \mid i \in [2^{cn}]}$ be the set of all output vectors
- Let X_{good} , X_{bad} be a partition of the set of Alice's inputs $\{0, 1\}^n$, s.t.

$$\begin{aligned} X_{good} &\coloneqq \{\mathbf{x} \in \{0,1\}^n : \exists i \text{ such that } d_H(x,out(M_i)) \leq \frac{n}{4} \} \\ X_{bad} &\coloneqq \{0,1\}^n \setminus X_{good} \end{aligned}$$

- **Observe:** $\mathbb{P}[error | x \in X_{bad}] \ge 1/4$
- We will show now that X_{good} is small and most of Alice's inputs are in X_{bad}
- This then implies that the average error is large!

Randomized CC of INDEX

Proof. (continued)

- Claim. $|X_{good}| \le 2^{0.961n + o(n)}$.
- Proof of Claim.
 - Consider $out(M_i)$, for any *i*. Then:

$$\begin{split} |\{y \in \{0,1\}^n : d_H(out(M_i), y) \le \frac{n}{4}| &= \sum_{0 \le i \le \frac{n}{4}} \binom{n}{i} \le \sum_{0 \le i \le \frac{n}{4}} \left(\frac{en}{i}\right)^i \le \frac{n}{4} \cdot \left(\frac{en}{\frac{n}{4}}\right)^{\frac{n}{4}} \\ &\le n \ (4e)^{\frac{n}{4}} \\ &n \ (4e)^{\frac{n}{4}} = n2^{\log_2(4e)n/4} \le n \ 2^{0.861n} = 2^{0.861n + \log n} \end{split}$$

- Hence:

$$\left| X_{good} \right| \le 2^{cn} \cdot 2^{0.861n + \log n} = 2^{cn + 0.861n + o(n)} \le 2^{0.1n + 0.861n + o(n)}$$

Proof. (continued)

- We thus obtain:

$$\mathbb{P}[error] = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \mathbb{P}[error \mid X = x] = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \frac{d_H(x, out(M(x)))}{n}$$
$$\geq \frac{1}{2^n} \sum_{x \in X_{bad}} \frac{\frac{n}{4}}{n} = \frac{1}{4} \cdot \frac{1}{2^n} \cdot |X_{bad}| \geq \frac{1}{4} \cdot \frac{1}{2^n} \cdot (2^n - 2^{0.961n + o(n)}) = 1/4 - o(1).$$

- This contradicts the error probability of $\frac{1}{10}$. Hence, protocols P and Q cannot exist!

Lower Bound for CONNECTIVITY

Theorem. Every one-pass randomized streaming algorithm with error probability at most 0.1 for deciding CONNECTIVITY requires space $\Omega(n)$.

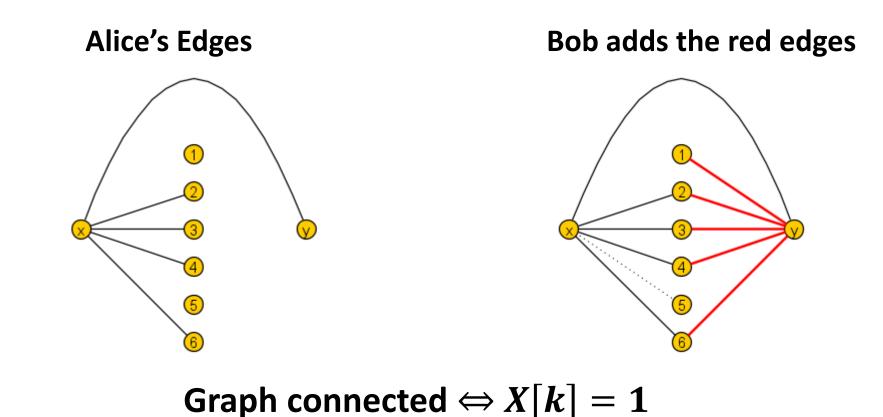
Proof.

- Let A be a one-pass randomized streaming algorithm for CONNECTIVITY.
- We will show how A can be used to solve $INDEX_{n-2}$. Since $R_{0.1}(INDEX_{n-2}) = \Omega(n)$, the result follows.
- Consider thus an instance $(X, k) \in \{0, 1\}^{n-2} \times [n-2]$ of $INDEX_{n-2}$
- Given X, Alice's constructs the following graph $G_1 = (V \cup \{x, y\}, E_1 \cup \{(x, y)\})$, with V = [n-2] and $(i, x) \in E_1 \Leftrightarrow X[i] = 1$
- Alice runs algorithm A on $E_1 \cup \{(x, y)\}$ and sends state of algorithm to Bob
- Bob adds edges $E_2 = \{(i, y) | 1 \le i \le n 2 \text{ and } i \ne k\}$ and completes the algorithm
- Bob outputs X[k] = 1 if graph connected and X[k] = 0 if graph not connected. \Box

Lower Bound for CONNECTIVITY (2)

Example (n=8).

- Alice holds $X = 0 \ 1 \ 1 \ 1 \ 0 \ 1 \in \{0, 1\}^{n-2} = \{0, 1\}^6$
- Bob holds index k = 5



Summary:

- We have proved that the one-way two-party randomized CC of $INDEX_n$ is $\Omega(n)$
- To this end, we considered deterministic protocols with distributional error and applied Yao's lemma

Streaming Applications:

- We have already seen that a streaming algorithm for MAXIMUM MATCHING can be used to solve $\text{INDEX}_{\Theta(n^2)}$
- Since we now know that not only $D(\text{INDEX}_n) = \Omega(n)$ but also $R_{\frac{1}{3}}(\text{INDEX}_n) = \Omega(n)$, every randomized streaming alg. for MAXIMUM MATCHING requires space $\Omega(n^2)$
- We have also seen that solving CONNECTIVITY requires $\Omega(n)$ space for every randomized streaming algorithm