Lecture 15

Lower Bounds 1: Communication Complexity and Streaming

Impossibility Results

How can we prove that a streaming algorithm requires at least a certain amount of space?

Lower Bounds = Impossibility Results:

- Computing a spanning tree requires $\Omega(\mathrm{n} \log \mathrm{n})$ space
- Computing a perfect/maximum matching requires $\Omega\left(n^{2}\right)$ space
- Determining the most frequent item requires $\Omega(n)$ space
- ...

Communication Complexity!

Communication Complexity

One-way Two-party Communication Model:

- Input $I_{A} \dot{\cup} I_{B}$ shared between two parties, denoted Alice and Bob
- Objective: Compute a function $f\left(I_{A}, I_{B}\right)$
- Alice sends a single message M to Bob
- Upon receipt of M, Bob outputs the result of the protocol

Goal: Ideally, $|M| \ll\left|I_{A}\right|$ or prove that this is not possible!

Communication Complexity: Example

Example:

Compute the sum

Protocol:

- Alice sends the sum of her elements to Bob, Bob adds his elements
- Then: $|M|=O(\log n)$, while $\left|I_{A}\right|$ may be as large as n
- Observe: Bob does not learn much about Alice's input!

Deterministic Communication Complexity

Deterministic One-way Communication Complexity:

- M is a function of I_{A}, i.e., $M=M\left(I_{A}\right)$
- The output R is a function of M and I_{B}, i.e., $R=R\left(M, I_{B}\right)$
- Let Π be a protocol for a problem P. The cost of protocol Π is the maximum number of bits communicated in an execution of Π
- The deterministic one-way communication complexity of a problem P on instances of size n, denoted $D\left(P_{n}\right)$, is the minimum cost over all protocols for P

Deterministic CC of INDEX

Communication Problem Index $\boldsymbol{x}_{\boldsymbol{n}}$:

- Alice holds $X \in\{0,1\}^{n}$, Bob holds index $k \in[n]$
- Bob needs to output the bit of X at position k, i.e., $X[k]$

Goal: Determine $D\left(\right.$ Index $\left._{n}\right)$

Deterministic CC of INDEX

Theorem. $D\left(\right.$ Index $\left._{n}\right) \geq n$.

Proof.

- Let Π be an arbitrary protocol for Index ${ }_{n}$ with cost c
- Observe: Π sends at most 2^{c} different messages from Alice to Bob
- Observe: There are 2^{n} different inputs for Alice
- Suppose $c \leq n-1 . \Rightarrow$ exist inputs $X_{1}, X_{2} \in\{0,1\}^{n}$ so that both inputs yield same message m
- Since $X_{1} \neq X_{2}$, there is a position $j \in[n]$ such that $X_{1}[j] \neq X_{2}[j]$
- Observe: output of the protocol is identical on inputs $\left(X_{1}, j\right)$ and $\left(X_{2}, j\right)$
- Π therefore makes an error in one of the two cases, a contradiction to assumption $c \leq n-1$.

Deterministic CC of INDEX

Theorem. $D\left(\right.$ Index $\left._{n}\right) \leq n$.

Proof.

Alice sends X to Bob, which requires a message of size n.

Corollary. $D\left(\right.$ Index $\left._{n}\right)=n$.

One-way Communication Complexity and Streaming
Streaming Algorithms are One-way Communication Protocols!

1. Split Input Stream into Two Parts

One-way Communication Complexity and Streaming

2. Set Two Parts as Input to Two-party Communication Problem

3. Reduction: Streaming Algorithm A with space s yields Communication Protocol with cost s!

- Alice runs A on her part of the input (stream)
- Message M consists of memory state of A (size at most s)
- Bob continues A on his part of the input and outputs result!

Our $1^{\text {st }}$ Streaming Lower Bound: Maximum Matching

Maximum Matching:

Goal: One-pass streaming algorithm for computing a Maximum Matching (no approximation!)

We will prove: Any deterministic streaming algorithm for Maximum Matching requires space $\Omega\left(n^{2}\right)$, where n is the number of vertices of the input graph.

Our $1^{\text {st }}$ Streaming LB: Maximum Matching

Theorem. Every deterministic streaming algorithm for Maximum Matching requires space $\Omega\left(n^{2}\right)$, where n is the number of vertices of the input graph.

Proof.

- Let \boldsymbol{A} be a one-pass deterministic streaming algorithm for Maximum Matching with space $s(n)$ (on an n-vertex graph)
- We will show that using \boldsymbol{A} we can construct a communication protocol Π for Index $n^{2} / 16$ with message size $s(n)$
- Since D $\left(\operatorname{Index}_{\frac{n^{2}}{16}}\right) \geq \frac{n^{2}}{16}$, we have $s(n)=\Omega\left(n^{2}\right)$.

Our $1^{\text {st }}$ Streaming LB: Maximum Matching (2)

Proof. (continued)

- Construction: Let (X, k) be an instance of $\operatorname{Index}_{\frac{n^{2}}{16}}$
- Alice and Bob construct a joint graph $G=G_{1} \cup G_{2}$
- Let $f:\left[\frac{n}{4}\right] \times\left[\frac{n}{4}\right] \rightarrow\left[\frac{n^{2}}{16}\right]$ be an arbitrary bijection $([x]:=\{1,2, \ldots, \mathrm{x}\})$
- Alice constructs a bipartite graph $G_{1}=\left(A_{1}, B_{1}, E_{1}\right)$, with $\mathrm{A}_{1}=\mathrm{B}_{1}=\left[\frac{n}{4}\right]$ and edge $(i, j) \in E_{1} \Leftrightarrow X[f(i, j)]=1$

Our $1^{\text {st }}$ Streaming LB: Maximum Matching (3)

Example Construction: $(n=12)$

$$
\begin{aligned}
& X=010001101 \\
& \in\{0,1\}^{\frac{n^{2}}{16}}=\{0,1\}^{9}
\end{aligned}
$$

Observe: $X[5]=0$, hence edge $(2,2) \notin E_{1}(f(2,2)=5)$

$$
k=5 \in\left[\frac{n^{2}}{16}\right]=[9]
$$

Our $1^{\text {st }}$ Streaming LB: Maximum Matching (4)

Proof. (continued)

- Alice runs algorithm \boldsymbol{A} on graph E_{1} and sends memory state to Bob
- Bob constructs graph G_{2} as follows:

1. Let $(a, b) \in A_{1} \times B_{1}$ be such that $f(a, b)=k$
2. Define $G_{2}=\left(A_{1} \cup A_{2}, B_{1} \cup B_{2}, E_{2}\right)$ with $\mathrm{A}_{2}=\mathrm{B}_{2}=\left[\frac{n}{4}+1, \frac{n}{2}\right]$ and

$$
E_{2}=\left\{\left.\left(\frac{n}{4}+\ell, \ell\right) \in A_{2} \times B_{1} \right\rvert\, \ell \neq b\right\} \cup\left\{\left.\left(\ell, \frac{n}{4}+\ell\right) \in A_{1} \times B_{2} \right\rvert\, \ell \neq a\right\}
$$

Our $1^{\text {st }}$ Streaming LB: Maximum Matching (5)

$$
E_{2}=\left\{\left.\left(\frac{n}{4}+\ell, \ell\right) \in A_{2} \times B_{1} \right\rvert\, \ell \neq b\right\} \cup\left\{\left.\left(\ell \frac{n}{4}+\ell\right) \in A_{1} \times B_{2} \right\rvert\, \ell \neq a\right\}
$$

Observation: G has a matching of size $\frac{n}{2}-1$ if and only if $X[k]=1$, otherwise G has a matching of size $\frac{n}{2}-2$

Our $1^{\text {st }}$ Streaming LB: Maximum Matching (6)

Proof. (continued)

- Bob continues the execution of \boldsymbol{A} on E_{2}
- If the output is a matching of size $\frac{n}{2}-1$ then Bob reports $X[k]=1$, otherwise (i.e., the size is $\frac{n}{2}-2$) Bob reports $X[k]=0$.

Summary and Outlook

Summary:

- We introduced the one-way two-party communication model for deterministic protocols
- We showed that $\mathrm{D}\left(\right.$ Index $\left._{n}\right)=n$.
- We gave a first space lower bound for deterministic streaming algorithms by a reduction to the Index communication problem

Outlook:

- Shortcoming: Lower bound only holds for deterministic algorithms!
- We'll look into randomized lower bounds in the next lecture

