
Lecture 14

Advanced Topics in Theoretical 
Computer Science

The AGM sketch: Spanning Forests in 
Insertion-deletion Streams



Connectivity in Insertion-deletion Streams

Insertion-only Streams:

- Maintain a spanning forest

- Semi-streaming space (𝑂(𝑛 log 𝑛) space)

Can we maintain a spanning forest in Insertion-deletion Streams?

No way of remembering all potential replacement edges…



Boundary Edges

Definition: Let 𝐺 = (𝑉, 𝐸) be a graph. For each 𝑆 ⊆ 𝑉, the boundary 
𝜕𝑆 is defined as:

𝜕𝑆 ≔ 𝑒 ∈ 𝐸 ∶ 𝑒 ∩ 𝑆 = 1 .

“𝜕𝑆 is the set of edges with exactly one endpoint in 𝑆”



Spanning Trees via a “Boundary Edge Oracle”

Boundary Edge Oracle:

How can we compute a spanning tree with a Boundary Edge Oracle?

Boundary Edge OracleAlgorithm

query(S)

Answer: one arbitrary edge from 
𝜕𝑆 if 𝜕𝑆 ≠ {}, ⊥ otherwise



Offline Algorithm (Boruvka’s Algorithm)

Algorithm: (input: graph 𝐺 = (𝑉, 𝐸), output: spanning forest in 𝐺)

1. 𝐹 ← {}

2. 𝐶 ← 𝑣 ∶ 𝑣 ∈ 𝑉

3. repeat
1. Query boundary edge for each 𝑆 ∈ 𝐶 and collect returned edges in 𝐻

2. 𝐹 ← spanning forest in graph 𝑉, 𝐹 ∪ 𝐻

3. 𝐶 ← {𝑉 𝑇 ∶ 𝑇 is a connected component of 𝑉, 𝐹 }

until 𝐻 =

4. return 𝐹



Offline Algorithm - Analysis

Observation. A component 𝑆 ∈ 𝐶 with 𝜕𝑆 = is a connected 
component in 𝐺.

Lemma. Let 𝑆 ∈ 𝐶 be the smallest component such that 𝜕𝑆 is non-
empty before iteration 𝑖. Then, every component after iteration 𝑖 is of 
size at least 2|𝑆|.

Proof. Let 𝐹 ∈ 𝐶 be an arbitrary component with non-empty boundary. 
By construction of the algorithm, 𝐹 is merged with at least one other 
component 𝑇. Hence, the resulting component is of size at least 𝐹 +
𝑇 ≥ 𝑆 + 𝑆 = 2|𝑆|. 

□

Corollary. The size of the smallest component with non-empty 
boundary doubles in each iteration.



Offline Algorithm – Analysis II

Theorem. Boruvka’s algorithm computes a spanning forest and 
terminates in at most log 𝑛 rounds.

Proof. 

Since the size of the smallest component with non-empty boundary 
doubles in each iteration, the smallest component with non-empty 
boundary after round 𝑖 is of size at least 2𝑖 . Since every component is 
of size at most 𝑛, we have:

2𝑖 ≤ 𝑛 ⇒ 𝑖 ≤ log 𝑛.
□



Boundary Edge Oracle and Streaming

Strategy:

- While processing the stream: Compute data structure 𝐷 that is able to answer 
boundary edge queries

- Use 𝐷 in a post-processing step to implement Boruvka’s algorithm

Algorithm



Recap on 𝑙0-sampling

Turnstile stream:

- Stream describes vector 𝑓 ∈ −𝑚,… ,𝑚 𝑛 by updates to its coordinates (𝑚 ∈ ℕ)

- Initially, 𝑓 = (0, 0, … , 0)

- Each item in the stream is an update 𝑗, 𝑐 , meaning 𝑓𝑗 ← 𝑓𝑗 + 𝑐 (𝑐 ∈ {−1, 1})

𝒍𝟎-sampling: [Jowhari, Sağlam, Tardos, 2011]

There is a turnstile streaming algorithm with space 𝑂 log2 𝑛 log
1

𝛿
that outputs a uniform 

random coordinate among the non-zero coordinates of 𝑓. It succeeds with proba. 1 − 𝛿.

Example: 𝒇 = (𝟐,−𝟒, 𝟎, 𝟎, 𝟏, 𝟎)

Then, the 𝑙0-sampler outputs 1, 2, or 5 each with probability 
1

3
(with success prob. 1 − 𝛿).



Insertion-deletion Streams are Turnstile Streams

Insertion-deletion Graph Streams are Turnstile Streams:

- Insertion-deletion graph stream describes vector 𝑓 𝜖 0,1
𝑛
2

- 𝑙0-sampling therefore corresponds to sampling one edge from the input graph

Other Applications of 𝒍𝟎-sampling in Graph Streams:

By considering substreams of the input stream we can sample from…

- The set of edges incident to a specific vertex

- A random edge in a specific induced subgraph

- …



Implementing Boundary Edge Oracle for Singletons

First Iteration of Boruvka’s Algorithm:

- For each vertex 𝑣 ∈ 𝑉, compute arbitrary incident edge to 𝑣

- How can we implement this step in insertion-deletion streams?

Insertion-deletion Streams:

For each vertex 𝑣 ∈ 𝑉, run an 𝑙0-sampler on edges incident to 𝑣 in 
order to sample a random incident edge while processing the stream 
(see example in previous lecture)!

Running 𝑛 𝑙0-samplers requires only semi-streaming space!



Implementing Second Round of Boruvka

Second Iteration of Boruvka’s Algorithm:

- First iteration yields a collection of forests of arbitrary sizes

- Let 𝑆 ∈ 𝐶 be an arbitrary forest (subset of vertices) 

- How can we process the input stream without knowing 𝑆 so that we 
can find a boundary edge from 𝜕𝑆 in a post-processing step?

AGM-Sketch!

Kook Jin Ahn, Sudipto Guha, Andrew McGregor:

Analyzing graph structure via linear measurements. SODA 2012: 459-467



Signed Incidence Matrix

Signed Incidence Matrix 𝑩 ∈ −1, 0,1 𝑛× 𝑛
2 : 

((𝑥, {𝑥, 𝑦}) = 1 if (𝑥, 𝑦) is an edge and 𝑥 < 𝑦

((𝑥, {𝑦, 𝑥}) = −1 if (𝑥, 𝑦) is an edge and 𝑥 > 𝑦

((𝑥, {𝑦, 𝑧}) = 0 otherwise

1 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
0 −1 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 {4,5}

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5



Signed Incidence Matrix and Boundary Edges

Example: 

- 𝑙0-sampling of row vector 𝑥3 + row vector 𝑥4

→ Boundary edge of component {3,4}!

1 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
0 −1 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1

Boundary edge of 𝑺: 𝑙0-sampling of sum of rows associated to vertices in 𝑆!

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 {4,5}

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5



𝑙0-sampler is a Linear Sketch

𝒍𝟎-sampling: [Jowhari, Sağlam, Tardos, 2011]

There is a turnstile algorithm with space 𝑂 log2 𝑛 log
1

𝛿
that outputs unif. random 

coordinate among the non-zero coordinates of 𝑓. It succeeds with proba. 1 − 𝛿.

Theorem. There exists a random matrix 𝐴 ∈ ℝ𝑂 log3 𝑛 ×𝑛 s.t. for any 𝑓 ∈ ℝ𝑛, with 
probability at least 1 −

1

poly 𝑛
, we can learn 𝑖 for some 𝑓𝑖 ≠ 0. 𝐴 𝑓 is a linear sketch.

Streaming Interpretation:

1. Choose random matrix 𝐴 and set 𝑓′ = 0

2. Upon arrival of update 𝑗, 𝑐 ∈ 𝑛 × {−1, 1}, compute 𝑓′ ← 𝑓′ + 𝑐 𝐴 𝑒𝑗, where 𝑒𝑗 is 
the 𝑗th unit vector

3. Upon completion, we can extract a non-zero coordinate of 𝑓 from 𝑓′

Closer look



𝑙0-sampler is a Linear Sketch

Useful Properties of Linear Sketches:

1. Union Bound: Suppose that we have multiple vectors 𝑓1, 𝑓2, … , 𝑓𝑡 then we can 
determine non-zero elements from everyone of them from 𝐴𝑓1, 𝐴𝑓2, … , 𝐴𝑓𝑡
with probability at least 1 −

𝑡

poly 𝑛
.

2. Linearity: Given 𝐴𝑓1 and 𝐴𝑓2, we can find a non-zero entry from 𝑓1 + 𝑓2 since
𝐴 𝑓1 + 𝑓2 = 𝐴𝑓1 + 𝐴𝑓2.



Final Algorithm

1. Sample random 𝑙0-sampling matrices 𝐴1, 𝐴2, … , 𝐴log 𝑛

2. Let 𝑥𝑣 denote the row vector in the signed incidence matrix 𝐵 associated to 
vertex 𝑣

3. While processing the stream: For every vertex 𝑣 ∈ 𝑉 compute
𝐴1𝑥𝑣 , 𝐴2𝑥𝑣 , … , 𝐴log 𝑛𝑥𝑣

4. Post-processing: Emulate Boruvka’s algorithm (using Union Bound & Linearity)

1st round: Can find an incident edge to every vertex 𝑣 from 𝐴1𝑥𝑣
𝑡th round: Suppose we need to find an incident edge from component 𝑆. Then 
we compute the sketch:  

σ𝑣∈𝑆𝐴𝑡𝑥𝑣 = 𝐴𝑡 σ𝑣∈𝑆 𝑥𝑣

and find a boundary edge to 𝑆



Analysis

Space: 

- Overall, we store 𝑛 log 𝑛 𝑙0-samplers 

- Setting 𝛿 =
1

𝑛3
in each 𝑙0-sampler yields overall success probability of 

at least 1 −
1

𝑛
. (union bound)

- This requires only semi-streaming space!

Correctness:

- Observe that in each iteration 𝑖 of Boruvka, the sketch 𝐴𝑖𝑥𝑣 of any 
vertex 𝑣 is needed only once!

- We therefore do not reuse sketches, which would increase the error 
probability



Summary

AGM Sketch:

- For a long time it was not clear that a spanning forest can be 
computed using space 𝑜 𝑛2 in insertion-deletion streams

- The AGM sketch is simple but was a surprise to many researchers

Summary Algorithm:

One pass semi-streaming algorithm in insertion-deletion streams for 
computing a spanning forest (and deciding connectivity)


