
Lecture 13

Advanced Topics in Theoretical 
Computer Science
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Insertion-deletion Streams

Edge-arrival insertion-only Model:

- Stream consists of sequence of edges of a graph

𝑆 = 𝑒2𝑒4𝑒3𝑒1

- All graph algorithms seen so far consider this model

Insertion-deletion (or dynamic) Model: (since 2013)

- Sequence of edge insertions and deletions 

- Only inserted edge can be deleted

𝑆 = 𝑒4𝑒3𝑒5 ഥ𝑒5𝑒2𝑒6 ഥ𝑒2𝑒2𝑒1 ഥ𝑒6



How to Process Insertion-deletion Streams?

Strategies:

- Greedy Algorithm for Matchings clearly fails…

- Even worse: Algorithms that deterministically store a set of edges may 
completely fail since stored edges could later be deleted…

Instead:

- Randomization is crucial

- Linear sketches, in particular, 𝑙0-sampling!



Recap on 𝑙0-sampling

Turnstile stream:

- Stream describes vector 𝑓 ∈ −𝑚,… ,𝑚 𝑛 by updates to its coordinates (𝑚 ∈ ℕ)

- Initially, 𝑓 = (0, 0, … , 0)

- Each item in the stream is an update 𝑗, 𝑐 , meaning 𝑓𝑗 ← 𝑓𝑗 + 𝑐 (𝑐 ∈ {−1, 1})

𝒍𝟎-sampling: [Jowhari, Sağlam, Tardos, 2011]

There is a turnstile streaming algorithm with space 𝑂 log2 𝑛 log
1

𝛿
that outputs a uniform 

random coordinate among the non-zero coordinates of 𝑓. It succeeds with proba. 1 − 𝛿.

Example: 𝒇 = (𝟐,−𝟒, 𝟎, 𝟎, 𝟏, 𝟎)

Then, the 𝑙0-sampler outputs 1, 2, or 5 each with probability 
1

3
(with success prob. 1 − 𝛿).



Insertion-deletion Streams are Turnstile Streams

Insertion-deletion Graph Streams are Turnstile Streams:

- Insertion-deletion graph stream describes vector 𝑓 𝜖 0,1
𝑛
2 (or 𝑓 𝜖 𝑚

𝑛
2

if multi-edges are allowed, for some integer 𝑚, 𝑚 = {0, 1, 2, … ,𝑚})

- 𝑙0-sampling thus corresponds to sampling an edge from the input graph

Other Applications of 𝒍𝟎-sampling in Graph Streams:

By considering substreams of the input stream we can sample from…

- The set of edges incident to a specific vertex

- A random edge in a specific induced subgraph

- …



Error Probability in 𝑙0-sampling

𝒍𝟎-sampling: [Jowhari, Sağlam, Tardos, 2011]

There is a turnstile streaming algorithm with space 𝑂 log2 𝑛 log
1

𝛿
that outputs a uniform 

random coordinate among the non-zero coordinates of 𝑓. It succeeds with proba. 1 − 𝛿.

Example:

- Suppose we wish to run an 𝑙0-sampler for each vertex 𝑣 𝜖 𝑉 in order to sample one 
incident edge to 𝑣. Further, our algorithm should be successful with probability ≥

99

100

- Observe that we are running 𝑛 𝑙0-samplers

- We will choose 𝛿 =
1

100𝑛
in all 𝑙0-samplers since: (union bound)

Pr[at least one sampler errs] ≤ 𝑛 ∙ Pr[one sampler errs] = 𝑛 ∙ 𝛿 = 𝑛 ∙
1

100𝑛
=

1

100

- Each sampler thus requires space 𝑂(log2 𝑛 log
1

𝛿
) = 𝑂(log3 𝑛) .

- 𝑂(𝑛 log3 𝑛) total space which is semi-streaming space!



Offline Matching Algorithm for Bipartite Graphs

Input: Bipartite Graph 𝐺 = (𝐴, 𝐵, 𝐸) with 𝐴 = 𝐵 = 𝑛 and integer parameter 𝑘

1. Sample uniform random subset 𝐴′ ⊆ 𝐴 of size 𝑘

2. For each 𝑎 𝜖 𝐴′, select arbitrary min {deg 𝑎 , 𝑘} edges incident to 𝑎
Let 𝐸𝑎 denote this subset

3. Compute a maximum matching 𝑴 in the graph (𝐴, 𝐵,∪𝑎∈𝐴′ 𝐸𝑎)

4. Return 𝑴
Input graph 𝐺[𝐴′ ∪ 𝐵] (𝐴, 𝐵,∪𝑎∈𝐴′ 𝐸𝑎) 𝑴



Analysis

Lemma. Suppose that 𝐺 contains a perfect matching (all vertices are matched). 

Then the matching algorithm on previous slide has an approximation factor of 
𝑘

2𝑛
.

Proof.

- Let 𝑀∗ be a perfect matching in 𝐺

- Let 𝐴1
′ ⊆ 𝐴′ be the subset of vertices 𝑎 such that 𝐸𝑎 = deg 𝑎 , let 𝐴2

′ = 𝐴′ ∖ 𝐴1
′

- First, suppose that |𝐴1
′ | ≥ |𝐴2

′ | (which implies that k ≥ |𝐴1
′ | ≥

k

2
). Observe that 

for every 𝑎 ∈ 𝐴1
′ , the optimal edge incident to 𝑎 in 𝑀∗ is retained in 𝐸𝑎. We 

hence stored at least 
𝑘

2
edges from 𝑀∗ and will thus be able to report a matching 

of at least that size. 

- The approximation factor is thus 
k

2
/n =

𝑘

2𝑛



Analysis (2)

- Next, suppose that |𝐴2
′ | > |𝐴1

′ | (which implies k ≥ |𝐴2
′ | ≥

k

2
). Observe that for 

each 𝑎 ∈ 𝐴2
′ , we have 𝐸𝑎 = 𝑘. Consider the graph 𝐻 = (𝐴2

′ , 𝐵,∪𝑎∈𝐴2
′ 𝐸𝑎). Then 

the degree of every 𝐴2
′ vertex is 𝑘.

- We will show that 𝐻 contains a matching of size |𝐴2
′ |:

- Consider the matching 𝑴′ produced by running Greedy on an arbitrary sequence 
of the edges of 𝐻. Suppose an edge 𝑎𝑏 is inserted into 𝑴′. Then, for every 𝑎′ ≠
𝑎, this disqualifies at most one edge incident to 𝑎′ (i.e., the potential edge 𝑎′𝑏) 
from being added to 𝑀′.

- Since the degree of every 𝑎′ ∈ 𝐴2
′ is 𝑘 and 𝐴2

′ ≤ 𝑘,
we are able to insert an edge incident to every vertex in 𝐴2

′ .

- Since |𝐴2
′ | ≥

k

2
, the approximation factor is at least 

k

2
/n =

𝑘

2𝑛
.

□



Turning the Algorithm into a Streaming Algorithm

Input: Bipartite Graph 𝐺 = (𝐴, 𝐵, 𝐸) with 𝐴 = 𝐵 = 𝑛 and integer parameter 𝑘

1. Sample uniform random subset 𝐴′ ⊆ 𝐴 of size 𝑘

2. For each 𝑎 𝜖 𝐴′, select arbitrary min {deg 𝑎 , 𝑘} edges incident to 𝑎
Let 𝐸𝑎 denote this subset

3. Compute a maximum matching 𝑴 in the graph (𝐴, 𝐵,∪𝑎∈𝐴′ 𝐸𝑎)

4. Return 𝑴

- Step 1 before processing the stream (pre-processing step)

- Step 3 after processing the stream (post-processing step)

How can we implement step 2 in the insertion-deletion streaming model?



Remaining Task to Solve

Task: For a given vertex 𝑎 ∈ 𝐴′, compute arbitrary min deg 𝑎 , 𝑘 edges while 
processing the stream

𝒍𝟎-sampling: (on substream of edges incident to 𝑎)

- Returns a uniform random edge incident to 𝑎

- Strategy: Run enough 𝑙0-samplers to yield min deg 𝑎 , 𝑘 different edges with 
very high probability 

- Exercise: If we run 10 𝑘 log 𝑛 𝑙0-samplers, then the probability that we do not 

obtain min deg 𝑎 , 𝑘 different edges is at most 
1

𝑛5
.



Final Insertion-deletion Streaming Algorithm

Insertion-deletion Streaming Algorithm:

Input: Bipartite Graph 𝐺 = (𝐴, 𝐵, 𝐸) with 𝐴 = 𝐵 = 𝑛 and integer parameter 𝑘

1. Sample uniform random subset 𝐴′ ⊆ 𝐴 of size 𝑘

2. While processing the stream: For each 𝑎 𝜖 𝐴′, maintain 10 𝑘 log 𝑛 𝑙0-samplers 
on substream of edges incident to 𝑎

3. Compute a maximum matching 𝑴 among all the edges sampled

4. Return 𝑴

Space Complexity: # samplers × space complexity of samplers

𝑂 𝑘 ∙ 10 𝑘 log 𝑛 ∙ log2 𝑛 log
1

𝛿
= 𝑂 𝑘2 log3 𝑛 ∙ log

1

𝛿



Error Probability and how to chose 𝛿?

Error probability:

- Error is introduced by the 𝑙0-samplers and the possibility that sampling 
10 𝑘 log 𝑛 uniform random edges incident to a vertex 𝑎 does not yield 
min deg 𝑎 , 𝑘 different edges

- By the union bound, we can sum up all these error probabilities to bound the total error 
probability of the algorithm 

- 𝒌 times: The probability that 10 𝑘 log 𝑛 uniform random edges do not yield enough 
different edges for a specific vertex is at most 1/𝑛5. 

- 𝟏𝟎 𝒌𝟐 𝐥𝐨𝐠𝒏 times: 𝑙0-sampler fails with probability 𝛿.

Total error probability: (union bound)

𝑘 ∙
1

𝑛5
+ 10𝑘2 log 𝑛 ∙ 𝛿 ≤

1

n4
+ 10n3𝛿

We select 𝛿 =
1

10𝑛5
. Then total error at most 

1

𝑛
.



Final Theorem

Theorem. There is an insertion-deletion streaming algorithm for 

Maximum Matching with approximation ratio 
𝑘

2𝑛
and space 

𝑂(𝑘2 log4 𝑛) that fails with probability at most 
1

𝑛
.

Corollary. (by setting 𝒌 = 𝒏) There is an insertion-deletion semi-

streaming algorithm with approximation ratio 
1

2 𝑛
that fails with 

probability at most 
1

𝑛
.



Summary

- The algorithm presented here is due to [Konrad 2015]
- It is known today that the best insertion-deletion semi-streaming algorithm 

for maximum matching has approximation ratio 
1

Θ(𝑛
1
3)

. The algorithm is due 

to [Assadi et al. 2016] and the optimality proof is due to [Dark, Konrad 
2020]
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