Lecture 13

Matching in Insertion-deletion Streams

Insertion-deletion Streams

Edge-arrival insertion-only Model:

- Stream consists of sequence of edges of a graph

$$
S=e_{2} e_{4} e_{3} e_{1}
$$

- All graph algorithms seen so far consider this model

Insertion-deletion (or dynamic) Model: (since 2013)

- Sequence of edge insertions and deletions
- Only inserted edge can be deleted

$$
S=e_{4} e_{3} e_{5} \overline{e_{5}} e_{2} e_{6} \overline{e_{2}} e_{2} e_{1} \overline{e_{6}}
$$

How to Process Insertion-deletion Streams?

Strategies:

- Greedy Algorithm for Matchings clearly fails...
- Even worse: Algorithms that deterministically store a set of edges may completely fail since stored edges could later be deleted...

Instead:

- Randomization is crucial
- Linear sketches, in particular, l_{0}-sampling!

Recap on l_{0}-sampling

Turnstile stream:

- Stream describes vector $f \in\{-m, \ldots, m\}^{n}$ by updates to its coordinates ($m \in \mathbb{N}$)
- Initially, $f=(0,0, \ldots, 0)$
- Each item in the stream is an update (j, c), meaning $f_{j} \leftarrow f_{j}+c(c \in\{-1,1\})$
$\boldsymbol{l}_{\mathbf{0}}$-sampling: [Jowhari, Sağlam, Tardos, 2011]
There is a turnstile streaming algorithm with space $O\left(\log ^{2} n \log _{\frac{1}{\delta}}\right)$ that outputs a uniform random coordinate among the non-zero coordinates of f. It succeeds with proba. $1-\delta$.

Example: $\boldsymbol{f}=(\mathbf{2},-\mathbf{4}, 0,0,1,0)$
Then, the l_{0}-sampler outputs 1,2 , or 5 each with probability $\frac{1}{3}$ (with success prob. $1-\delta$).

Insertion-deletion Streams are Turnstile Streams

Insertion-deletion Graph Streams are Turnstile Streams:

- Insertion-deletion graph stream describes vector $f \in\{0,1\}\binom{n}{2}\left(\right.$ or $f \in[m]\binom{n}{2}$ if multi-edges are allowed, for some integer $m,[m]=\{0,1,2, \ldots, m\}$)
- l_{0}-sampling thus corresponds to sampling an edge from the input graph

Other Applications of \boldsymbol{l}_{0}-sampling in Graph Streams:

By considering substreams of the input stream we can sample from...

- The set of edges incident to a specific vertex
- A random edge in a specific induced subgraph

Error Probability in l_{0}-sampling

$\boldsymbol{l}_{\mathbf{0}}$-sampling: [Jowhari, Sağlam, Tardos, 2011]
There is a turnstile streaming algorithm with space $O\left(\log ^{2} n \log \frac{1}{\delta}\right)$ that outputs a uniform random coordinate among the non-zero coordinates of f. It succeeds with proba. $1-\delta$.

Example:

- Suppose we wish to run an l_{0}-sampler for each vertex $v \in V$ in order to sample one incident edge to v. Further, our algorithm should be successful with probability $\geq \frac{99}{100}$
- Observe that we are running $n l_{0}$-samplers
- We will choose $\delta=\frac{1}{100 n}$ in all l_{0}-samplers since: (union bound) $\operatorname{Pr}\left[\right.$ at least one sampler errs] $\leq n \cdot \operatorname{Pr}\left[\right.$ one sampler errs] $=n \cdot \delta=n \cdot \frac{1}{100 n}=\frac{1}{100}$
- Each sampler thus requires space $O\left(\log ^{2} n \log \frac{1}{\delta}\right)=O\left(\log ^{3} n\right)$.
- $O\left(n \log ^{3} n\right)$ total space which is semi-streaming space!

Offline Matching Algorithm for Bipartite Graphs

Input: Bipartite Graph $G=(A, B, E)$ with $|A|=|B|=n$ and integer parameter k

1. Sample uniform random subset $A^{\prime} \subseteq A$ of size k
2. For each $a \in A^{\prime}$, select arbitrary $\min \{\operatorname{deg}(a), k\}$ edges incident to a Let E_{a} denote this subset
3. Compute a maximum matching \boldsymbol{M} in the graph $\left(A, B, \cup_{a \in A^{\prime}} E_{a}\right)$
4. Return \boldsymbol{M}

$G\left[A^{\prime} \cup B\right]$

$\left(A, B, \cup_{a \in A^{\prime}} E_{a}\right)$

Analysis

Lemma. Suppose that G contains a perfect matching (all vertices are matched). Then the matching algorithm on previous slide has an approximation factor of $\frac{k}{2 n}$.

Proof.

- Let M^{*} be a perfect matching in G
- Let $A_{1}^{\prime} \subseteq A^{\prime}$ be the subset of vertices a such that $\left|E_{a}\right|=\operatorname{deg}(a)$, let $A_{2}^{\prime}=A^{\prime} \backslash A_{1}^{\prime}$
- First, suppose that $\left|A_{1}^{\prime}\right| \geq\left|A_{2}^{\prime}\right|$ (which implies that $\mathrm{k} \geq\left|A_{1}^{\prime}\right| \geq \frac{\mathrm{k}}{2}$). Observe that for every $a \in A_{1}^{\prime}$, the optimal edge incident to a in M^{*} is retained in E_{a}. We hence stored at least $\frac{k}{2}$ edges from M^{*} and will thus be able to report a matching of at least that size.
- The approximation factor is thus $\frac{\mathrm{k}}{2} / \mathrm{n}=\frac{k}{2 n}$

Analysis (2)

- Next, suppose that $\left|A_{2}^{\prime}\right|>\left|A_{1}^{\prime}\right|$ (which implies $\mathrm{k} \geq\left|A_{2}^{\prime}\right| \geq \frac{\mathrm{k}}{2}$). Observe that for each $a \in A_{2}^{\prime}$, we have $\left|E_{a}\right|=k$. Consider the graph $H=\left(A_{2}^{\prime}, B, \cup_{a \in A_{2}^{\prime}} E_{a}\right)$. Then the degree of every A_{2}^{\prime} vertex is k.
- We will show that H contains a matching of size $\left|A_{2}^{\prime}\right|$:
- Consider the matching \boldsymbol{M}^{\prime} produced by running Greedy on an arbitrary sequence of the edges of H. Suppose an edge $a b$ is inserted into \boldsymbol{M}^{\prime}. Then, for every $a^{\prime} \neq$ a, this disqualifies at most one edge incident to a^{\prime} (i.e., the potential edge $a^{\prime} b$) from being added to M^{\prime}.
- Since the degree of every $a^{\prime} \in A_{2}^{\prime}$ is k and $\left|A_{2}^{\prime}\right| \leq k$, we are able to insert an edge incident to every vertex in A_{2}^{\prime}.
- Since $\left|A_{2}^{\prime}\right| \geq \frac{\mathrm{k}}{2}$, the approximation factor is at least $\frac{\mathrm{k}}{2} / \mathrm{n}=\frac{k}{2 n}$.

Turning the Algorithm into a Streaming Algorithm

Input: Bipartite Graph $G=(A, B, E)$ with $|A|=|B|=n$ and integer parameter k

1. Sample uniform random subset $A^{\prime} \subseteq A$ of size k
2. For each $a \in A^{\prime}$, select arbitrary $\min \{\operatorname{deg}(a), k\}$ edges incident to a

Let E_{a} denote this subset
3. Compute a maximum matching \boldsymbol{M} in the graph $\left(A, B, \cup_{a \in A^{\prime}} E_{a}\right)$
4. Return \boldsymbol{M}

- Step 1 before processing the stream (pre-processing step)
- Step 3 after processing the stream (post-processing step)

How can we implement step 2 in the insertion-deletion streaming model?

Remaining Task to Solve

Task: For a given vertex $a \in A^{\prime}$, compute arbitrary $\min \{\operatorname{deg}(a), k\}$ edges while processing the stream
$\boldsymbol{l}_{\mathbf{0}}$-sampling: (on substream of edges incident to a)

- Returns a uniform random edge incident to a
- Strategy: Run enough l_{0}-samplers to yield $\min \{\operatorname{deg}(a), k\}$ different edges with very high probability
- Exercise: If we run $10 k \log n l_{0}$-samplers, then the probability that we do not obtain $\min \{\operatorname{deg}(a), k\}$ different edges is at most $\frac{1}{n^{5}}$.

Final Insertion-deletion Streaming Algorithm

Insertion-deletion Streaming Algorithm:

Input: Bipartite Graph $G=(A, B, E)$ with $|A|=|B|=n$ and integer parameter k

1. Sample uniform random subset $A^{\prime} \subseteq A$ of size k
2. While processing the stream: For each $a \in A^{\prime}$, maintain $10 k \log n l_{0}$-samplers on substream of edges incident to a
3. Compute a maximum matching \boldsymbol{M} among all the edges sampled
4. Return \boldsymbol{M}

Space Complexity: \# samplers \times space complexity of samplers

$$
O\left(k \cdot 10 k \log n \cdot \log ^{2} n \log \frac{1}{\delta}\right)=O\left(k^{2} \log ^{3} n \cdot \log \frac{1}{\delta}\right)
$$

Error Probability and how to chose δ ?

Error probability:

- Error is introduced by the l_{0}-samplers and the possibility that sampling $10 k \log n$ uniform random edges incident to a vertex a does not yield $\min \{\operatorname{deg}(a), k\}$ different edges
- By the union bound, we can sum up all these error probabilities to bound the total error probability of the algorithm
- \boldsymbol{k} times: The probability that $10 k \log n$ uniform random edges do not yield enough different edges for a specific vertex is at most $1 / n^{5}$.
- $\mathbf{1 0} \boldsymbol{k}^{\mathbf{2}} \log \boldsymbol{n}$ times: l_{0}-sampler fails with probability δ.

Total error probability: (union bound)

$$
k \cdot \frac{1}{n^{5}}+10 k^{2} \log n \cdot \delta \leq \frac{1}{\mathrm{n}^{4}}+10 \mathrm{n}^{3} \delta
$$

We select $\delta=\frac{1}{10 n^{5}}$. Then total error at most $\frac{1}{n}$.

Final Theorem

Theorem. There is an insertion-deletion streaming algorithm for Maximum Matching with approximation ratio $\frac{k}{2 n}$ and space $O\left(k^{2} \log ^{4} n\right)$ that fails with probability at most $\frac{1}{n}$.

Corollary. (by setting $\boldsymbol{k}=\sqrt{\boldsymbol{n}}$) There is an insertion-deletion semistreaming algorithm with approximation ratio $\frac{1}{2 \sqrt{n}}$ that fails with probability at most $\frac{1}{n}$.

Summary

- The algorithm presented here is due to [Konrad 2015]
- It is known today that the best insertion-deletion semi-streaming algorithm for maximum matching has approximation ratio $\frac{1}{1}$. The algorithm is due to [Assadi et al. 2016] and the optimality proof is due to [Dark, Konrad 2020]
[Konrad, 2015] Christian Konrad: Maximum Matching in Turnstile Streams. ESA 2015: 840-852
[Assadi et al. 2016] Sepehr Assadi, Sanjeev Khanna, Yang Li, Grigory Yaroslavtsev: Maximum Matchings in Dynamic Graph Streams and the Simultaneous Communication Model. SODA 2016: 1345-1364
[Dark, Konrad 2020] Jacques Dark, Christian Konrad: Optimal Lower Bounds for Matching and Vertex Cover in Dynamic Graph Streams. Computational Complexity Conference 2020: 30:1-30:14

