Lecture 12

Multi-pass Algorithm for Matching

Multi-pass semi-streaming Algorithms

Recall:

- Greedy is the best one-pass streaming algorithm known for Maximum Matching, even if space $O\left(n^{2-\varepsilon}\right)$ is allowed, for any $\varepsilon>0$
- Greedy has an approximation factor of $\frac{1}{2}$

Question:

Can we improve on Greedy if we are allowed multiple (e.g. 2 or 3) passes?

Matchings in Bipartite Graphs

Maximal and Maximum Matchings in Bipartite Graphs:

- Let $G=(A, B, E)$ be a bipartite graph, \boldsymbol{M} a maximal and M^{*} a maximum matching
- We already know that: $|\boldsymbol{M}| \geq \frac{1}{2}\left|M^{*}\right|$

Structure:

- Let $A(\boldsymbol{M})(B(\boldsymbol{M}))$ denote matched A-vertices (resp. B-vertices) Let $\overline{A(\boldsymbol{M})}(\overline{B(\boldsymbol{M})})$ denote unmatched A-vertices (resp. B-vertices)
- No edges between $\overline{A(\boldsymbol{M})}$ and $\overline{B(\boldsymbol{M})}$ since M maximal

Where are the edges of M^{*} ?

Matchings in Bipartite Graphs (2)

Edges from M^{*} :

- Let $L=G[A(\boldsymbol{M}) \cup \overline{B(\boldsymbol{M})}]$ and $R=G[\overline{A(\boldsymbol{M})} \cup B(\boldsymbol{M})]$ (vertex-induced subgraphs as in picture)
- Then, $e \in M^{*}$ is either in $\mathrm{G}[A(\boldsymbol{M}) \cup B(\boldsymbol{M})]$, in L, or in R

If M is small then L and R contain large matchings!
Lemma. $\left|M^{*} \cap L\right| \geq\left|M^{*}\right|-|\boldsymbol{M}|$. (also $\left|M^{*} \cap R\right| \geq\left|M^{*}\right|-|\boldsymbol{M}|$)
Proof.

- $|\boldsymbol{M}|$ B-vertices are matched by \boldsymbol{M}
- $\left|M^{*}\right|$ B-vertices are matched by M^{*}

- Hence, $\left|M^{*}\right|-|\boldsymbol{M}| B$-vertices outside $B(\boldsymbol{M})$ are matched by M^{*}. These vertices are part of L.

Algorithmic Idea

Corollary. Graphs L and R contain matchings of size at least $\left|M^{*}\right|-|\boldsymbol{M}|$.

Algorithmic Idea: (Finding 3-augmenting paths)

1. Compute (maximal) matching \boldsymbol{M} (e.g. using Greedy) in G
2. Compute "large" matching M_{L} in L
3. Compute "large" matching M_{R} in R
4. For every $e=a b \in M$ such that there exists edge $a b^{\prime} \in M_{L}$ and $a^{\prime} b \in M_{R}$ replace e with $\left\{a b^{\prime}, a^{\prime} b\right\}$ in \boldsymbol{M} Call such an edge "good"
Resulting matching size: $|\boldsymbol{M}|+$ \# of good edges

How to implement steps 2 and 3?

First Attempt

First attempt:

1. Compute matching \boldsymbol{M} in G using Greedy (first pass)
2. Compute matching M_{L} in L using Greedy (second pass)
3. Compute matching M_{R} in R using Greedy (third pass)
4. For every $e=a b \in M$ such that there exists edge $a b^{\prime} \in M_{L}$ and $a^{\prime} b \in M_{R}$ replace e with $\left\{a b^{\prime}, a^{\prime} b\right\}$ in M

Observation. There is a graph such that:

- $|\boldsymbol{M}|=\frac{1}{2}\left|M^{*}\right|$,
- $\left|M_{L}\right|=\frac{1}{2}|\boldsymbol{M}|,\left|M_{R}\right|=\frac{1}{2}|\boldsymbol{M}|$
- There are no good edges.

Algorithm 3passMatch

Idea: Make M_{R} dependent on M_{L} !

Algorithm 3passMatch

1. Compute matching \boldsymbol{M} in G using Greedy (first pass)
2. Compute matching M_{L} in L using Greedy (second pass)
3. Let $B^{\prime} \subseteq B$ be set of vertices that are endpoints in paths of length 2 in $M_{L} \cup \boldsymbol{M}$
4. Compute matching M_{R} in $G\left[B^{\prime} \cup \overline{A(M)}\right]$ using Greedy (third pass)
5. For every $e=a b \in M$ such that there exists
edge $a b^{\prime} \in M_{L}$ and $a^{\prime} b \in M_{R}$ replace e with $\left\{a b^{\prime}, a^{\prime} b\right\}$ in M

L

L

Analysis

Analysis:

- Semi-streaming space: We store at most three matchings
- Approximation guarantee: Our goal is to give a lower bound on the number of good edges since the resulting matching is of size $|\boldsymbol{M}|+\#$ good edges

Lemma. $\left|B^{\prime}\right| \geq \frac{\left|M^{*}\right|-|M|}{2}$.

Proof.

- As previously argued, L contains matching of size $\left|M^{*}\right|-|\boldsymbol{M}|$
- M_{L} is a maximal matching in L, and hence $\left|M_{L}\right| \geq \frac{\left|M^{*}\right|-|M|}{2}$
- By construction, $\left|\boldsymbol{B}^{\prime}\right|=\left|\boldsymbol{M}_{L}\right|$

Analysis (2)

Lemma. $\left|M_{R}\right| \geq \frac{3}{4}\left|M^{*}\right|-\frac{5}{4}|\boldsymbol{M}|$.

Proof.

- M_{R} is maximal matching in $G\left[B^{\prime} \cup \overline{A(\boldsymbol{M})}\right]$, hence need to bound size of largest matching in $G\left[B^{\prime} \cup \overline{A(M)}\right]$
- As previously argued, R contains a matching of size $\geq\left|M^{*}\right|-|\boldsymbol{M}|$
- Hence, at most $|B(\boldsymbol{M})|-\left(\left|M^{*}\right|-|\boldsymbol{M}|\right)=|\boldsymbol{M}|-\left(\left|M^{*}\right|-|\boldsymbol{M}|\right)$ $=2|\boldsymbol{M}|-\left|M^{*}\right|$ vertices of $B(\boldsymbol{M})$ are not incident to an edge of this matching
- Hence, graph $G\left[B^{\prime} \cup \overline{A(M)}\right]$ contains a matching of size at least

$$
\left|B^{\prime}\right|-\left(2|\boldsymbol{M}|-\left|M^{*}\right|\right) \geq \frac{\left|M^{*}\right|-|\boldsymbol{M}|}{2}-\left(2|\boldsymbol{M}|-\left|M^{*}\right|\right)=1.5\left|M^{*}\right|-2.5|\boldsymbol{M}|
$$

- Since M_{R} is a maximal matching in $G\left[B_{3}^{\prime} \cup \overline{A(M)}\right]_{5}$, we have:

$$
\left|M_{R}\right| \geq \frac{3}{4}\left|M^{*}\right|-\frac{5}{4}|\boldsymbol{M}| \text {. }
$$

Analysis (3)

Theorem. 3-passMatch is a $\frac{3}{5}$-approximation semi-streaming algorithm.
Proof.

- First, suppose that $|\boldsymbol{M}| \geq \frac{3}{5}\left|M^{*}\right|$. Then we are already done. ©
- Next, suppose that $|\boldsymbol{M}|<\frac{3}{5}\left|M^{*}\right|$. The computed matching is of size $|\boldsymbol{M}|+\#$ of good edges $=|\boldsymbol{M}|+\left|M_{R}\right|$, which yields:

$$
\begin{aligned}
& |\boldsymbol{M}|+\left|M_{R}\right| \geq|\boldsymbol{M}|+\frac{3}{4}\left|M^{*}\right|-\frac{5}{4}|\boldsymbol{M}|=\frac{3}{4}\left|M^{*}\right|-\frac{1}{4}|\boldsymbol{M}|>\frac{3}{4}\left|M^{*}\right|-\frac{1}{4} \frac{3}{5}\left|M^{*}\right| \\
& =\left|M^{*}\right|\left(\frac{3}{4}-\frac{3}{20}\right)=\frac{3}{5}\left|M^{*}\right| .
\end{aligned}
$$

Summary and References

Summary

- 3passMatch was first analyzed by [Kale and Tirodkar, 2017]
- The currently best 3-pass semi-streaming algorithm has approximation ratio 0.6067 [Konrad, 2018]
- The currently best 2-pass semi-streaming algorithm has approximation ratio 2 $\sqrt{2} \approx 0.5857$ [Konrad, 2018]

References

[Kale and Tirodkar] Sagar Kale, Sumedh Tirodkar: Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams. APPROX-RANDOM 2017: 15:1-15:21
[Konrad] Christian Konrad: A Simple Augmentation Method for Matchings with Applications to Streaming Algorithms. MFCS 2018: 74:1-74:16

