Advanced Topics in Theoretical Computer Science

Lecture 12

Multi-pass Algorithm for Matching

Multi-pass semi-streaming Algorithms

Recall:

- Greedy is the best one-pass streaming algorithm known for Maximum Matching, even if space $O(n^{2-\varepsilon})$ is allowed, for any $\varepsilon > 0$
- Greedy has an approximation factor of $\frac{1}{2}$

Question:

Can we improve on Greedy if we are allowed multiple (e.g. 2 or 3) passes?

Maximal and Maximum Matchings in Bipartite Graphs:

- Let G = (A, B, E) be a bipartite graph, M a maximal and M^* a maximum matching
- We already know that: $|\mathbf{M}| \ge \frac{1}{2} |\mathbf{M}^*|$

Structure:

- Let $\underline{A(M)}(\underline{B(M)})$ denote matched *A*-vertices (resp. *B*-vertices) Let $\overline{A(M)}(\overline{B(M)})$ denote unmatched *A*-vertices (resp. *B*-vertices)
- No edges between $\overline{A(M)}$ and $\overline{B(M)}$ since M maximal

A(M) B(M) $\overline{B(M)}$ $\overline{A(M)}$

Where are the edges of *M*^{*}?

Matchings in Bipartite Graphs (2)

Edges from *M*^{*}:

- Let $L = G[A(\mathbf{M}) \cup \overline{B(\mathbf{M})}]$ and $R = G[\overline{A(\mathbf{M})} \cup B(\mathbf{M})]$ (vertex-induced subgraphs as in picture)
- Then, $e \in M^*$ is either in $G[A(M) \cup B(M)]$, in L, or in R

If *M* is small then *L* and *R* contain large matchings!

Lemma. $|M^* \cap L| \ge |M^*| - |M|$. (also $|M^* \cap R| \ge |M^*| - |M|$) Proof.

- |*M*| B-vertices are matched by *M*
- $|M^*|$ B-vertices are matched by M^*
- Hence, $|M^*| |M| B$ -vertices outside B(M) are matched by M^* . These vertices are part of L.

Corollary. Graphs L and R contain matchings of size at least $|M^*| - |M|$.

Algorithmic Idea: (Finding 3-augmenting paths)

- 1. Compute (maximal) matching M (e.g. using Greedy) in G
- 2. Compute "large" matching M_L in L
- 3. Compute "large" matching M_R in R
- 4. For every $e = ab \in M$ such that there exists edge $ab' \in M_L$ and $a'b \in M_R$ replace e with $\{ab', a'b\}$ in MCall such an edge "good"

Resulting matching size: |M| + # of good edges

How to implement steps 2 and 3?

First attempt:

- 1. Compute matching **M** in G using Greedy (first pass)
- 2. Compute matching M_L in L using Greedy (second pass)
- 3. Compute matching M_R in R using Greedy (third pass)
- 4. For every $e = ab \in M$ such that there exists edge $ab' \in M_L$ and $a'b \in M_R$ replace e with $\{ab', a'b\}$ in M

Observation. There is a graph such that:

- $|M| = \frac{1}{2} |M^*|,$
- $-|M_L| = \frac{1}{2}|M|, |M_R| = \frac{1}{2}|M|$

- There are no good edges.

Algorithm 3passMatch

Idea: Make M_R dependent on M_L !

Algorithm 3passMatch

- 1. Compute matching **M** in G using Greedy (first pass)
- 2. Compute matching M_L in L using Greedy (second pass)
- 3. Let $B' \subseteq B$ be set of vertices that are endpoints in paths of length 2 in $M_L \cup M$
- 4. Compute matching M_R in $G[B' \cup \overline{A(M)}]$ using Greedy (third pass)
- 5. For every $e = ab \in M$ such that there exists edge $ab' \in M_L$ and $a'b \in M_R$ replace e with $\{ab', a'b\}$ in M

Analysis:

- Semi-streaming space: We store at most three matchings
- Approximation guarantee: Our goal is to give a lower bound on the number of good edges since the resulting matching is of size |M| + # good edges

Lemma.
$$|B'| \ge \frac{|M^*| - |M|}{2}$$

Proof.

- As previously argued, L contains matching of size $|M^*| |M|$
- M_L is a maximal matching in L, and hence $|M_L| \ge \frac{|M^*| |M|}{2}$
- By construction, $|B'| = |M_L|$

Analysis (2)

Lemma. $|M_R| \ge \frac{3}{4} |M^*| - \frac{5}{4} |M|.$ Proof.

- M_R is maximal matching in $G[B' \cup \overline{A(M)}]$, hence need to bound size of largest matching in $G[B' \cup A(M)]$
- As previously argued, R contains a matching of size $\geq |M^*| |M|$
- Hence, at most $|B(M)| (|M^*| |M|) = |M| (|M^*| |M|)$ = $2|M| - |M^*|$ vertices of B(M) are not incident to an edge of this matching
- Hence, graph $G[B' \cup \overline{A(M)}]$ contains a matching of size at least

$$|B'| - (2|M| - |M^*|) \ge \frac{|M^*| - |M|}{2} - (2|M| - |M^*|) = 1.5 |M^*| - 2.5|M|$$

- Since M_R is a maximal matching in $G[B' \cup \overline{A(M)}]$, we have: $|M_R| \ge \frac{3}{4} |M^*| - \frac{5}{4} |M|.$ A(M) B(M) $M_{L} \qquad A(M)$ $A(M) \qquad A(M)$

Analysis (3)

Theorem. 3-passMatch is a $\frac{3}{5}$ -approximation semi-streaming algorithm. Proof.

- First, suppose that $|\mathbf{M}| \ge \frac{3}{5} |\mathbf{M}^*|$. Then we are already done. \bigcirc
- Next, suppose that $|\mathbf{M}| < \frac{3}{5} |\mathbf{M}^*|$. The computed matching is of size $|\mathbf{M}| + \#$ of good edges = $|\mathbf{M}| + |\mathbf{M}_R|$, which yields: $|\mathbf{M}| + |\mathbf{M}_R| \ge |\mathbf{M}| + \frac{3}{4} |\mathbf{M}^*| - \frac{5}{4} |\mathbf{M}| = \frac{3}{4} |\mathbf{M}^*| - \frac{1}{4} |\mathbf{M}| > \frac{3}{4} |\mathbf{M}^*| - \frac{1}{4} \frac{3}{5} |\mathbf{M}^*|$ $= |\mathbf{M}^*| \left(\frac{3}{4} - \frac{3}{20}\right) = \frac{3}{5} |\mathbf{M}^*|.$

Summary and References

Summary

- **3passMatch** was first analyzed by [Kale and Tirodkar, 2017]
- The currently best 3-pass semi-streaming algorithm has approximation ratio 0.6067 [Konrad, 2018]
- The currently best 2-pass semi-streaming algorithm has approximation ratio 2 $\sqrt{2}\approx 0.5857$ [Konrad, 2018]

References

[Kale and Tirodkar] Sagar Kale, Sumedh Tirodkar: Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams. APPROX-RANDOM 2017: 15:1-15:21

[Konrad] Christian Konrad: A Simple Augmentation Method for Matchings with Applications to Streaming Algorithms. MFCS 2018: 74:1-74:16