
Lecture 12

Advanced Topics in Theoretical
Computer Science

Multi-pass Algorithm for Matching

Multi-pass semi-streaming Algorithms

Recall:

- Greedy is the best one-pass streaming algorithm known for Maximum
Matching, even if space 𝑂 𝑛2−𝜀 is allowed, for any 𝜀 > 0

- Greedy has an approximation factor of
1

2

Question:

Can we improve on Greedy if we are allowed multiple (e.g. 2 or 3)
passes?

Matchings in Bipartite Graphs

Maximal and Maximum Matchings in Bipartite Graphs:

- Let 𝐺 = (𝐴, 𝐵, 𝐸) be a bipartite graph, 𝑴 a maximal and 𝑀∗ a maximum
matching

- We already know that: 𝑴 ≥
1

2
|𝑀∗|

Structure:

- Let 𝐴(𝑴) (𝐵(𝑴)) denote matched 𝐴-vertices (resp. 𝐵-vertices)
Let 𝐴(𝑴) (𝐵(𝑴)) denote unmatched 𝐴-vertices (resp. 𝐵-vertices)

- No edges between 𝐴(𝑴) and 𝐵(𝑴) since 𝑀 maximal

Where are the edges of 𝑴∗?

𝐴 𝑴 𝐵 𝑴

𝐵(𝑴) 𝐴(𝑴)

Matchings in Bipartite Graphs (2)

Edges from 𝑴∗:

- Let 𝐿 = 𝐺[𝐴 𝑴 ∪ 𝐵(𝑴)] and 𝑅 = 𝐺 𝐴 𝑴 ∪ 𝐵 𝑴
(vertex-induced subgraphs as in picture)

- Then, 𝑒 ∈ 𝑀∗ is either in G[𝐴 𝑴 ∪ 𝐵 𝑴], in 𝐿, or in 𝑅

If 𝑴 is small then 𝑳 and 𝑹 contain large matchings!

Lemma. 𝑀∗ ∩ 𝐿 ≥ 𝑀∗ − 𝑴 . (also 𝑀∗ ∩ 𝑅 ≥ 𝑀∗ − 𝑴)

Proof.

- |𝑴| B-vertices are matched by 𝑴

- 𝑀∗ B-vertices are matched by 𝑀∗

- Hence, 𝑀∗ − 𝑴 𝐵-vertices outside 𝐵(𝑴) are matched by 𝑀∗. These vertices
are part of 𝐿. □

𝐿 𝑅

𝐴 𝑴 𝐵 𝑴

𝐵(𝑴) 𝐴(𝑴)

Algorithmic Idea

Corollary. Graphs L and R contain matchings of size at least 𝑀∗ − 𝑴 .

Algorithmic Idea: (Finding 3-augmenting paths)

1. Compute (maximal) matching 𝑴 (e.g. using Greedy) in 𝐺

2. Compute “large” matching 𝑀𝐿in 𝐿

3. Compute “large” matching 𝑀𝑅 in 𝑅

4. For every 𝑒 = 𝑎𝑏 ∈ 𝑴 such that there exists
edge 𝑎𝑏′ ∈ 𝑀𝐿 and 𝑎′𝑏 ∈ 𝑀𝑅 replace 𝑒 with {𝑎𝑏′, 𝑎′𝑏} in 𝑴
Call such an edge “good”

Resulting matching size: |𝑴| + # of good edges

How to implement steps 2 and 3?

𝐴 𝑴 𝐵 𝑴

𝐵(𝑴) 𝐴(𝑴)

𝐿 𝑅

First Attempt

First attempt:

1. Compute matching 𝑴 in 𝐺 using Greedy (first pass)

2. Compute matching 𝑀𝐿in 𝐿 using Greedy (second pass)

3. Compute matching 𝑀𝑅 in 𝑅 using Greedy (third pass)

4. For every 𝑒 = 𝑎𝑏 ∈ 𝑴 such that there exists
edge 𝑎𝑏′ ∈ 𝑀𝐿 and 𝑎′𝑏 ∈ 𝑀𝑅 replace 𝑒 with {𝑎𝑏′, 𝑎′𝑏} in 𝑴

Observation. There is a graph such that:

- 𝑴 =
1

2
|𝑀∗|,

- 𝑀𝐿 =
1

2
𝑴 , 𝑀𝑅 =

1

2
|𝑴|

- There are no good edges.

𝐴 𝑴 𝐵 𝑴𝐵(𝑴) 𝐴(𝑴)

𝐿 𝑅

Algorithm 3passMatch

Idea: Make 𝑀𝑅 dependent on 𝑀𝐿!

Algorithm 3passMatch

1. Compute matching 𝑴 in 𝐺 using Greedy (first pass)

2. Compute matching 𝑀𝐿in 𝐿 using Greedy (second pass)

3. Let 𝐵′ ⊆ 𝐵 be set of vertices that are endpoints in paths of length 2 in 𝑀𝐿 ∪𝑴

4. Compute matching 𝑀𝑅 in 𝐺[𝐵′ ∪ 𝐴 𝑴] using Greedy (third pass)

5. For every 𝑒 = 𝑎𝑏 ∈ 𝑴 such that there exists
edge 𝑎𝑏′ ∈ 𝑀𝐿 and 𝑎′𝑏 ∈ 𝑀𝑅 replace 𝑒 with {𝑎𝑏′, 𝑎′𝑏} in 𝑴

𝐿 𝑅 𝐿 𝑅 𝐿 𝑅

𝐵′ 𝐵′𝑀𝐿 𝑀𝐿

𝑀𝑅

𝑴 𝑴 𝑴

Analysis

Analysis:

- Semi-streaming space: We store at most three matchings

- Approximation guarantee: Our goal is to give a lower bound on the number of
good edges since the resulting matching is of size 𝑴 +# good edges

Lemma. 𝐵′ ≥
𝑀∗ − 𝑴

2
.

Proof.

- As previously argued, 𝐿 contains matching of size 𝑀∗ − 𝑴

- 𝑀𝐿 is a maximal matching in 𝐿, and hence|𝑀𝐿| ≥
𝑀∗ − 𝑴

𝟐

- By construction, 𝑩′ = 𝑴𝑳

□

𝐿 𝑅

Analysis (2)

Lemma. 𝑀𝑅 ≥
3

4
𝑀∗ −

5

4
𝑴 .

Proof.

- 𝑀𝑅 is maximal matching in 𝐺[𝐵′ ∪ 𝐴 𝑴], hence need to bound
size of largest matching in 𝐺[𝐵′ ∪ 𝐴 𝑴]

- As previously argued, 𝑅 contains a matching of size ≥ 𝑀∗ − 𝑴

- Hence, at most 𝐵(𝑴) − 𝑀∗ − 𝑴 = 𝑴 − 𝑀∗ − 𝑴
= 2 𝑴 − |𝑀∗| vertices of 𝐵(𝑴) are not incident to an
edge of this matching

- Hence, graph 𝐺[𝐵′ ∪ 𝐴 𝑴] contains a matching of size at least

𝐵′ − 2 𝑴 − 𝑀∗ ≥
𝑀∗ − 𝑴

2
− 2 𝑴 − 𝑀∗ = 1.5 𝑀∗ − 2.5|𝑴|

- Since 𝑀𝑅 is a maximal matching in 𝐺[𝐵′ ∪ 𝐴 𝑴], we have:

𝑀𝑅 ≥
3

4
𝑀∗ −

5

4
𝑴 .

□

𝐿 𝑅

𝐴 𝑴 𝐵 𝑴

𝐵(𝑴) 𝐴(𝑴)

Analysis (3)

Theorem. 3-passMatch is a
𝟑

𝟓
-approximation semi-streaming algorithm.

Proof.

- First, suppose that 𝑴 ≥
3

5
|𝑀∗|. Then we are already done. ☺

- Next, suppose that 𝑴 <
3

5
|𝑀∗|. The computed matching is of size |𝑴| + # of

good edges = |𝑴| + |𝑀𝑅|, which yields:

𝑴 + 𝑀𝑅 ≥ 𝑴 +
3

4
𝑀∗ −

5

4
𝑴 =

3

4
𝑀∗ −

1

4
𝑴 >

3

4
𝑀∗ −

1

4

3

5
𝑀∗

= 𝑀∗
3

4
−

3

20
=
3

5
𝑀∗ .

□

Summary and References

Summary

- 3passMatch was first analyzed by [Kale and Tirodkar, 2017]

- The currently best 3-pass semi-streaming algorithm has approximation ratio
0.6067 [Konrad, 2018]

- The currently best 2-pass semi-streaming algorithm has approximation ratio 2 −
2 ≈ 0.5857 [Konrad, 2018]

References
[Kale and Tirodkar] Sagar Kale, Sumedh Tirodkar: Maximum Matching in Two, Three, and a Few
More Passes Over Graph Streams. APPROX-RANDOM 2017: 15:1-15:21

[Konrad] Christian Konrad: A Simple Augmentation Method for Matchings with Applications to
Streaming Algorithms. MFCS 2018: 74:1-74:16

