
Lecture 10

Advanced Topics in Theoretical
Computer Science

Spanners and Distance
Estimation

Distance Estimation Problem

Task: Given 𝑣1, 𝑣2 ∈ 𝑉, what is the distance

𝑑𝐺 𝑣1, 𝑣2 = min{len 𝜋 ∶ 𝜋 is a path from 𝑣1 to 𝑣2}

between 𝑣1 and 𝑣2 in 𝐺?

Can we compute 𝒅𝑮 𝒗𝟏, 𝒗𝟐 in a streaming fashion?

𝑣1

𝑣2

𝑑𝐺 𝑣1, 𝑣2

Distance Estimation Problem

Exact Distance Estimation in Data Streams:

Deciding whether two vertices are at distance exactly 3 (or at a larger
distance) requires Ω(𝑛2) space, i.e., no sublinear space streaming algorithm
exists.

Approximate Distance Estimation:

Given 𝑣1, 𝑣2 ∈ 𝑉, output estimated distance 𝑑(𝑣1, 𝑣2) such that

𝑑𝐺 𝑣1, 𝑣2 ≤ 𝑑(𝑣1, 𝑣2) ≤ 𝑡 ⋅ 𝑑𝐺 𝑣1, 𝑣2

for some small value 𝑡 > 1.

What is the trade-off between space and approximation guarantee 𝒕?

Algorithm

Distance Estimation Algorithm:

Input: Vertices 𝑣1, 𝑣2, parameter 𝑡

1. 𝐻 ← ∅

2. While(stream not yet empty)
a) Let 𝑒 = 𝑎1𝑎2 be next edge in stream
b) if (𝑑𝐻 𝑎1, 𝑎2 ≥ 𝑡 + 1) then

𝐻 ← 𝐻 ∪ 𝑒

3. return 𝑑𝐻 𝑣1, 𝑣2

𝑑𝐻 𝑎1, 𝑎2 ∶= 𝑑(𝑉,𝐻) 𝑎1, 𝑎2 : Shortest path between 𝑎1 and 𝑎2 using only edges from 𝐻

Analysis:

1. Approximation Guarantee?

2. Space?

?

Example: 𝑡 = 2
H: black edges

𝑎1

𝑎2

Algorithm: Approximation Guarantee

Theorem. 𝑑𝐺 𝑣1, 𝑣2 ≤ 𝑑𝐻 𝑣1, 𝑣2 ≤ 𝑡 ⋅ 𝑑𝐺 𝑣1, 𝑣2 , for any pair of vertices 𝑣1, 𝑣2
Proof.

- Let 𝜋 be a shortest 𝑣1, 𝑣2 path in 𝐺 and let 𝑣1 = 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘 = 𝑣2 be the vertices in 𝜋 in
order. Then, 𝑑𝐺 𝑣1, 𝑣2 = 𝑘 .

- Consider any index 𝑖 and let 𝑒 = 𝑎𝑖−1𝑎𝑖. Then:
If 𝑒 ∈ 𝐻 then 𝑑𝐻 𝑎𝑖−1, 𝑎𝑖 = 1,
If 𝑒 ∉ 𝐻 then at time when 𝑒 appeared in the stream, we had 𝑑𝐻′ 𝑎𝑖−1, 𝑎𝑖 ≤ 𝑡, where 𝐻′
was the value of 𝐻 at that time. Thus: 𝑑𝐻 𝑎𝑖−1, 𝑎𝑖 ≤ 𝑡.

- We therefore obtain:

𝑑𝐻 𝑣1, 𝑣2 ≤

𝑖=1

𝑘

𝑑𝐻 𝑎𝑖−1, 𝑎𝑖 ≤ 𝑘 ⋅ 𝑡 = 𝑡 ⋅ 𝑑𝐺 𝑣1, 𝑣2 .

□

……
𝑎𝑖𝑎𝑖−1 e𝑣1 = 𝑎0 𝑎𝑘 = 𝑣2

Spanners

Observe:

- Theorem on last slide holds for any pair of vertices 𝑣1, 𝑣2
- In particular, the construction of set 𝐻 is independent from 𝑣1, 𝑣2
- We can therefore estimate the distance of any pair of vertices using edges 𝐻!

Spanner:

- Set 𝐻 can be regarded as a data structure that allows us to query approximate
distances

- Such a data structure is known as a 𝑡-Spanner, where 𝑡 indicates the
approximation factor

Spanner ResultDistance query

Algorithm: Space Complexity

Space Complexity:

Clearly O(𝐻 log 𝑛), but how large can 𝐻 get?

→ Reduce to a question in extremal combinatorics!

Lemma. (𝑉, 𝐻) does not contain any cycle of length at most 𝑡 + 1.

Proof. (by contradiction)

- Suppose that (𝑉, 𝐻) contained a cycle 𝐶 of length at most 𝑡 + 1

- Let 𝑒 = 𝑢1𝑢2 be the last edge inserted into 𝐻 that completed the cycle 𝐶

- Then, since 𝐶 is of length at most 𝑡 + 1, 𝑑𝐻′ 𝑢1, 𝑢2 ≤ 𝑡, where 𝐻’ was the value
of 𝐻 when 𝑒 was inserted

- Contradiction to the fact that algorithm would then not have inserted 𝑒 into 𝐻.

□

𝑢1 𝑒 𝑢2

Algorithm: Space Complexity

Definition (girth): The girth 𝛾(𝐺) of a graph 𝐺 is the length of its shortest cycle.

Observe: 𝑉,𝐻 has girth 𝑡 + 2

Extremal Combinatorics:

What is the maximum number of edges that a graph of girth 𝑘 can have?

Theorem. Let 𝐺 = 𝑉, 𝐸 be an 𝑛-vertex graph with 𝑚 edges and girth 𝛾 𝐺 ≥ 𝑘. Then:

𝑚 ≤ 𝑛 + 𝑛

1+
1

𝑘−1
2 .

Corollary. The space complexity of our algorithm is 𝑂 𝑛1+
2

𝑡 log 𝑛 .

𝐻 ≤ 𝑛 + 𝑛
1+

1
𝑡+2−1

2 = 𝑛 + 𝑛
1+

1
𝑡+1
2 ≤ 𝑛 + 𝑛

1+
1
𝑡
2 = 𝑛 + 𝑛1+

2
𝑡 = 𝑂 𝑛1+

2
𝑡 .

(using
𝑡+1

2
≥

𝑡

2
which holds for integral 𝑡)

Algorithm: Space Complexity

Lemma. Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑 =
2𝑚

𝑛
. Let 𝐹 be the

graph obtained from 𝐺 by repeatedly deleting nodes of degree at most
𝑑

2
. Then:

- The minimum degree in 𝐹 is at least
𝑑

2
.

- 𝐹 is non-empty.

Proof.

By contradiction, suppose that 𝐹 is empty. Then, when we removed the last vertex

𝑣, we removed no incident edge to 𝑣. We therefore removed at most
𝑛−1 𝑑

2
=

𝑚
𝑛−1

𝑛
edges and thus there are

𝑚

𝑛
edges left in 𝐹, a contradiction to 𝐹 being

empty.

□

Algorithm: Space Complexity

Theorem. Let 𝐺 = 𝑉, 𝐸 be an 𝑛-vertex graph with 𝑚 edges and girth 𝛾 𝐺 ≥ 𝑘. Then:

𝑚 ≤ 𝑛 + 𝑛

1+
1

𝑘−1
2 .

Proof:

- Let 𝑑 =
2𝑚

𝑛
be the average degree.

- If 𝑑 ≤ 4 then 𝑚 ≤ 2𝑛 which implies the theorem. Suppose hence that 𝑑 > 4.

- Let 𝐹 be graph obtained by repeatedly removing from 𝐺 all vertices
of degree at most

𝑑

2
. Then, 𝐹 has minimum degree

𝑑

2
and is non-empty.

- Let 𝑙 =
𝑘−1

2
and observe that 𝛾 𝐹 ≥ 𝛾 𝐺 ≥ 𝑘.

- Consider any vertex 𝑣. The distance-𝑙 neighborhood of 𝑣 is acyclic and therefore a tree (if not
then there was a cycle of length less than 𝑘). The branching factor of this tree is at least

𝑑

2
− 1 > 1

(using 𝑑 > 4). The tree therefore has at least (
𝑑

2
− 1)𝑙 vertices. Hence,

𝑛 ≥
𝑑

2
− 1

𝑙

=
𝑚

𝑛
− 1

𝑙

⇒ 𝑚 ≤ 𝑛 + 𝑛1+
1
𝑙

□

Summary

Summary:

- There is a streaming algorithm with space 𝑂 𝑛1+
2

𝑡 log 𝑛 for computing a t-
spanner.

- For 𝑡 ≥ 3, the space bound is o(𝑛2)!

- Analysis: Space complexity inherent in algorithm, can be bounded by a result
from extremal combinatorics

- Slightly improved bounds are possible (see references)

References:

- Surender Baswana: “Streaming algorithm for graph spanners - single pass and constant
processing time per edge”. Inf. Process. Lett. 106(3): 110-114 (2008)

- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang: “Graph
Distances in the Data-Stream Model”. SIAM J. Comput. 38(5): 1709-1727 (2008)

