Lecture 10

Spanners and Distance Estimation

Distance Estimation Problem

Task: Given $v_{1}, v_{2} \in V$, what is the distance

$$
d_{G}\left(v_{1}, v_{2}\right)=\min \left\{\operatorname{len}(\pi): \pi \text { is a path from } v_{1} \text { to } v_{2}\right\}
$$

between v_{1} and v_{2} in G ?

Can we compute $d_{G}\left(v_{1}, v_{2}\right)$ in a streaming fashion?

Distance Estimation Problem

Exact Distance Estimation in Data Streams:

Deciding whether two vertices are at distance exactly 3 (or at a larger distance) requires $\Omega\left(n^{2}\right)$ space, i.e., no sublinear space streaming algorithm exists.

Approximate Distance Estimation:

Given $v_{1}, v_{2} \in V$, output estimated distance $\left.\widehat{d(} v_{1}, v_{2}\right)$ such that

$$
\left.d_{G}\left(v_{1}, v_{2}\right) \leq \widehat{d(} v_{1}, v_{2}\right) \leq t \cdot d_{G}\left(v_{1}, v_{2}\right)
$$

for some small value $t>1$.
What is the trade-off between space and approximation guarantee t ?

Algorithm

Distance Estimation Algorithm:

Input: Vertices v_{1}, v_{2}, parameter t

1. $H \leftarrow \varnothing$
2. While(stream not yet empty)
a) Let $e=a_{1} a_{2}$ be next edge in stream
b) if $\left(d_{H}\left(a_{1}, a_{2}\right) \geq t+1\right)$ then

Example: $t=2$

$$
H \leftarrow H \cup\{e\}
$$

H: black edges
3. return $d_{H}\left(v_{1}, v_{2}\right)$
$d_{H}\left(a_{1}, a_{2}\right):=d_{(V, H)}\left(a_{1}, a_{2}\right)$: Shortest path between a_{1} and a_{2} using only edges from H

Analysis:

1. Approximation Guarantee?
2. Space?

Algorithm: Approximation Guarantee

Theorem. $d_{G}\left(v_{1}, v_{2}\right) \leq d_{H}\left(v_{1}, v_{2}\right) \leq t \cdot d_{G}\left(v_{1}, v_{2}\right)$, for any pair of vertices v_{1}, v_{2}

Proof.

- Let π be a shortest v_{1}, v_{2} path in G and let $v_{1}=a_{0}, a_{1}, a_{2}, \ldots, a_{k}=v_{2}$ be the vertices in π in order. Then, $d_{G}\left(v_{1}, v_{2}\right)=k$.

- Consider any index i and let $e=a_{i-1} a_{i}$. Then:

If $e \in H$ then $d_{H}\left(a_{i-1}, a_{i}\right)=1$,
If $e \notin H$ then at time when e appeared in the stream, we had $d_{H^{\prime}}\left(a_{i-1}, a_{i}\right) \leq t$, where H^{\prime} was the value of H at that time. Thus: $d_{H}\left(a_{i-1}, a_{i}\right) \leq t$.

- We therefore obtain:

$$
d_{H}\left(v_{1}, v_{2}\right) \leq \sum_{i=1}^{k} d_{H}\left(a_{i-1}, a_{i}\right) \leq k \cdot t=t \cdot d_{G}\left(v_{1}, v_{2}\right) .
$$

Spanners

Observe:

- Theorem on last slide holds for any pair of vertices v_{1}, v_{2}
- In particular, the construction of set H is independent from v_{1}, v_{2}
- We can therefore estimate the distance of any pair of vertices using edges H !

Spanner:

- Set H can be regarded as a data structure that allows us to query approximate distances
- Such a data structure is known as a t-Spanner, where t indicates the approximation factor

Algorithm: Space Complexity

Space Complexity:

Clearly $\mathrm{O}(|H| \log n)$, but how large can H get?
\rightarrow Reduce to a question in extremal combinatorics!

Lemma. (V, H) does not contain any cycle of length at most $t+1$.
Proof. (by contradiction)

- Suppose that (V, H) contained a cycle C of length at most $t+1$
- Let $e=u_{1} u_{2}$ be the last edge inserted into H that completed the cycle C
- Then, since C is of length at most $t+1, d_{H^{\prime}}\left(u_{1}, u_{2}\right) \leq t$, where H^{\prime} was the value of H when e was inserted
- Contradiction to the fact that algorithm would then not have inserted e into H.

Algorithm: Space Complexity

Definition (girth): The girth $\gamma(G)$ of a graph G is the length of its shortest cycle.
Observe: (V, H) has girth $t+2$

Extremal Combinatorics:

What is the maximum number of edges that a graph of girth k can have?

Theorem. Let $G=(V, E)$ be an n-vertex graph with m edges and girth $\gamma(G) \geq k$. Then:

$$
m \leq n+n^{\left.1+\frac{1}{2}\right\rfloor}
$$

Corollary. The space complexity of our algorithm is $O\left(n^{1+\frac{2}{t}} \log n\right)$.

$$
|H| \leq n+n^{1+\frac{1}{\left[\frac{t+2-1}{2}\right]}}=n+n^{1+\frac{1}{\left[\frac{t+1}{2}\right]}} \leq n+n^{1+\frac{1}{2}}=n+n^{1+\frac{2}{t}}=O\left(n^{\left.1+\frac{2}{t}\right)}\right.
$$

(using $\left\lfloor\frac{t+1}{2}\right\rfloor \geq \frac{t}{2}$ which holds for integral t)

Algorithm: Space Complexity

Lemma. Let G be an n-vertex graph with average degree $d=\frac{2 m}{n}$. Let F be the graph obtained from G by repeatedly deleting nodes of degree at most $\frac{d}{2}$. Then:

- The minimum degree in F is at least $\frac{d}{2}$.
- F is non-empty.

Proof.

By contradiction, suppose that F is empty. Then, when we removed the last vertex v, we removed no incident edge to v. We therefore removed at most $\frac{(n-1) d}{2}=$ $m \frac{n-1}{n}$ edges and thus there are $\frac{m}{n}$ edges left in F, a contradiction to $F \stackrel{2}{\text { being }}$ empty.

Algorithm: Space Complexity

Theorem. Let $G=(V, E)$ be an n-vertex graph with m edges and girth $\gamma(G) \geq k$. Then:

$$
m \leq n+n^{1+\frac{1}{\left\lfloor\frac{k-1}{2}\right]}}
$$

Proof:

- Let $d=\frac{2 m}{n}$ be the average degree.
- If $d \leq 4$ then $m \leq 2 n$ which implies the theorem. Suppose hence that $d>4$.
- Let F be graph obtained by repeatedly removing from G all vertices of degree at most $\frac{d}{2}$. Then, F has minimum degree $\frac{d}{2}$ and is non-empty.
- Let $l=\left\lfloor\frac{k-1}{2}\right\rfloor$ and observe that $\gamma(F) \geq \gamma(G) \geq k$.

- Consider any vertex v. The distance-l neighborhood of v is acyclic and therefore a tree (if not then there was a cycle of length less than k). The branching factor of this tree is at least $\frac{a}{2}-1>1$ (using $d>4$). The tree therefore has at least $\left(\frac{d}{2}-1\right)^{l}$ vertices. Hence,

$$
n \geq\left(\frac{d}{2}-1\right)^{l}=\left(\frac{m}{n}-1\right)^{l} \Rightarrow m \leq n+n^{1+\frac{1}{l}}
$$

Summary

Summary:

- There is a streaming algorithm with space $O\left(n^{1+\frac{2}{t}} \log n\right)$ for computing a tspanner.
- For $t \geq 3$, the space bound is $o\left(n^{2}\right)$!
- Analysis: Space complexity inherent in algorithm, can be bounded by a result from extremal combinatorics
- Slightly improved bounds are possible (see references)

References:

- Surender Baswana: "Streaming algorithm for graph spanners - single pass and constant processing time per edge". Inf. Process. Lett. 106(3): 110-114 (2008)
- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang: "Graph Distances in the Data-Stream Model". SIAM J. Comput. 38(5): 1709-1727 (2008)

