
Lecture 9

Advanced Topics in Theoretical
Computer Science

Graph Streams: Connectivity
and Bipartiteness

Streaming Algorithms for Graph Problems

Input graph 𝐺 = 𝑉, 𝐸 , 𝑛 = 𝑉 ,𝑚 = 𝐸

How to process 𝑮 in a streaming fashion?

1. Streaming (or linear or sequential) access

2. Sublinear space

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

1. Streaming Access: Edge-arrival Model

Edge-arrival Model: (Insertion-only Model)

- Sequence of the edges of the input graph

- No assumption on the order of the edges, e.g.,

𝑆 = 𝑣1𝑣2, 𝑣4𝑣5, 𝑣2𝑣3, 𝑣2𝑣5, 𝑣1𝑣3, 𝑣3𝑣4.

Random Access Streaming Access

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

1

2

3

4

5

6

2. Sublinear Space

Stream length: 𝑚 edges

How large can 𝒎 be in terms of 𝒏?

Lemma. A (simple) graph on 𝑛 vertices has 𝑂(𝑛2) edges.

Proof.
- Every (simple) graph is a subgraph of the complete graph, i.e., the graph

that contains all potential edges

- The complete graph on 𝑛 vertices has 𝑛
2

=
𝑛 (𝑛−1)

2
= 𝜃(𝑛2) edges.

□

2. Sublinear Space: Semi-streaming Algorithms

Space Considerations:

- Space 𝑜(𝑚) is sublinear space

- We will however focus on space in terms of 𝑛

- Space 𝑜(𝑛2) is therefore sublinear for very dense graphs (and non-trivial)

Semi-streaming Algorithms: (Feigenbaum et al. 2004)

- Streaming algorithms for graph problems with space 𝑂 𝑛 poly log 𝑛 =
𝑂(𝑛 log𝑐 𝑛), for some constant 𝑐, are called “semi-streaming” algorithms

- Allows storing a poly-logarithmic number of edges per vertex (on average)

- Sublinear for graphs with 𝑚 = Ω 𝑛1+𝜀 , for any 𝜀 > 0

Why Semi-streaming?

Why space 𝑂 𝑛 poly log 𝑛 ? (e.g., why not 𝑂 𝑛 ?)

1. Output size of graph problems

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

Maximum Matching
Largest subset of vertex-
disjoint edges

Spanning Tree
Subtree that spans all
vertices of the graph

Maximum Independent Set
Largest subset of non-adjacent
vertices

Size: at most 𝑛 / 2 Size: 𝑛 − 1 Size: at most 𝑛

Why Semi-streaming? (2)

Why space 𝑂 𝑛 poly log 𝑛 ?

2. Many problems provably cannot be solved with less space! (see lower bounds
lectures)

- Connectivity: Is the graph connected?

- Bipartiteness: Is the graph bipartite?

- Cycle Freeness: Does the graph contain a cycle?

Theorem (Sun, Woodruff 2015): Every 1-pass streaming algorithm for
Connectivity, Bipartiteness, or Cycle Freeness requires space Ω(𝑛 log 𝑛) .

Boolean
output!

Practical Considerations

1. Big graphs exist and are important
- Social Network graphs

E.g. Facebook: 2.6 billion active users
→ graph on 2.6 billion vertices…

- Web graph

- Graph databases

- Brain models

2. Big graphs and Streaming?

- Memory considerations

- Facebook: stream of new friendships
forms edge stream

- Twitter updates

First Graph Streaming Algorithm: Connectivity

Goal: Semi-streaming algorithm for Connectivity in edge-arrival model

- Semi-streaming: space 𝑂 𝑛 poly log 𝑛

- Connectivity: output ቊ
0, if 𝐺 is not connected
1, if 𝐺 is connected

- Edge-arrival model: Edges arrive in arbitrary order

Idea:

- Maintain a spanning forest:

𝐺 = (𝑉, 𝐸) connected: 𝐹 ⊆ 𝐸 is a spanning tree if 𝐹 (or (𝑉, 𝐹)) is a tree that covers every
vertex 𝑣 ∈ 𝑉

𝐺 = (𝑉, 𝐸) disconnected: 𝐹 ⊆ 𝐸 is a spanning forest if 𝐹 is the disjoint union of spanning trees
of the connected components of 𝐺

- If spanning forest becomes a tree then graph is connected.

Can we maintain a spanning forest in semi-streaming space?

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6 𝑣7

Two Connected Components

Spanning Forest

First Graph Streaming Algorithm: Connectivity

Maintaining a Spanning Forest in Semi-streaming Space:

1. 𝐹 ← ∅

2. While(stream not yet empty)
a) Let 𝑒 be next edge in stream
b) if (𝐹 ∪ 𝑒) does not contain a cycle then

𝐹 ← 𝐹 ∪ 𝑒

3. return 1 if 𝐹 is a tree (e.g. 𝐹 = 𝑛 − 1) and 0 otherwise

Analysis:

- Let 𝐸𝑖 be the set consisting of the first 𝑖 edges, let 𝐺𝑖 = (𝑉, 𝐸𝑖)

- Denote by 𝐹𝑖 variable 𝐹 after iteration 𝑖

- By induction: 𝐹𝑖 is a spanning forest in 𝐺𝑖 ⇒ 𝐹𝑖 ≤ 𝑛 − 1, for every 𝑖 ⇒ 𝐹𝑚 is spanning
forest in 𝐺𝑚 = 𝐺.

- Store at most 𝑛 − 1 edges, which yields space 𝑂(𝑛 log 𝑛) .

First Graph Streaming Algorithm: Connectivity

Induction:

- Hypothesis: 𝐹𝑖 is spanning forest in 𝐺𝑖
- Induction Start: 𝐹0 = ∅ is spanning forest in 𝐺0
- To show: 𝐹𝑖+1 is spanning forest in 𝐺𝑖+1

Case 1: 𝐹𝑖 ∪ 𝒆 does not contain a cycle

- 𝐹𝑖+1 = 𝐹𝑖 ∪ 𝒆 is clearly a forest as it remains acyclic

- 𝒆 merges two components in 𝐺, and 𝒆 connects the two
spanning trees of the two components in 𝐹𝑖, 𝐹𝑖+1 is thus a spanning forest

Case 2: 𝐹𝑖 ∪ 𝒆 contain a cycle

- 𝐹𝑖+1 = 𝐹𝑖 ⇒ 𝐹𝑖+1 is a forest

- Connected components do not change, 𝐹𝑖+1 is thus a spanning forest

Testing Bipartiteness

Goal: Semi-streaming algorithm for Testing Bipartiteness

Definition: A graph 𝐺 = (𝑉, 𝐸) is bipartite if (the three items are equivalent)

1. 𝑉 = 𝐴 ሶ∪ 𝐵 (𝑉 is the disjoint union of 𝐴 and 𝐵) and all edges have one
endpoint in 𝐴 and one in 𝐵; (we usually write 𝐺 = (𝐴, 𝐵, 𝐸))

2. 𝐺 admits a 2-coloring, i.e., an assignment 𝑐: 𝑉 → 0, 1
of (at most) two colors to 𝑉 such that no edge is
monochromatic, i.e., both endpoints have the same color

3. 𝐺 does not contain any odd-length cycles .

A B

Testing Bipartiteness: Algorithm

Semi-streaming Algorithm for Bipartiteness Testing

1. 𝐹 ← ∅

2. While(stream not yet empty)

a) Let 𝑒 be next edge in stream

b) if (𝐹 ∪ 𝑒) does not contain a cycle then
𝐹 ← 𝐹 ∪ 𝑒
else if (𝐹 ∪ 𝑒) contains an odd-length cycle then
return “not bipartite”

3. return “bipartite”

Analysis:

- Space 𝑂(𝑛 log 𝑛) as in Connectivity algorithm

- Why is the algorithm correct?

Testing Bipartiteness: Algorithm

Correctness:

1st case: Algorithm reports “not bipartite”
Only happens when odd cycle detected. Algorithm therefore correct.

2nd case: Algorithm reports “bipartite”

- Consider spanning forest (𝑉, 𝐹) when algorithm terminates

- Define 2-coloring 𝑐: 𝑉 → 0, 1 that colors the forest (𝑉, 𝐹)

- Claim: 𝑐 is also a valid coloring of input graph 𝐺 = 𝑉, 𝐸

- Suppose it is not. Then, ∃ 𝑣1𝑣2 ∈ 𝐸 such that 𝑐(𝑣1) = 𝑐(𝑣2). Observe that nodes with
the same color are at even distance in (𝑉, 𝐹). Let 𝑃 ⊆ 𝐹 be the edges of the path from
𝑣1 to 𝑣2 in (𝑉, 𝐹). Then 𝑃 ∪ {𝑣1, 𝑣2} forms an odd cycle, a contradiction to the fact that
the algorithm did not enter the first case.

□

𝑣1

𝑣2

Summary and References

Summary:

- We introduced the semi-streaming model (i.e., space 𝑂(𝑛 poly log 𝑛))

- We can maintain a spanning forest in semi-streaming space

- This allows us to decide Connectivity and Bipartiteness

References:

- Xiaoming Sun, David P. Woodruff: “Tight Bounds for Graph Problems in Insertion Streams”.
APPROX-RANDOM 2015: 435-448

- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang: “On Graph
Problems in a Semi-streaming Model.” ICALP 2004: 531-543

