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Introduction to `0 sampling
Over a large data set that assigns counts to tokens, the goal of an
`0-sampler is to draw (approximately) uniformly from the set of
tokens with non-zero frequency.

This is non-trivial because we want to use small space and counts can
be both positive and negative.

Consider a stream of visits by customers to the busy website of some
business or organization. An analyst might want to sample uniformly
from the set of all distinct customers who visited the website.
(`0-sampling)

Or an analyst might want to sample with probability proportional to
their visit frequency. (`1-sampling)
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Approximate `0 sampling
The `0-sampling cannot be solved exactly in sublinear space
deterministically.

We will see a randomised approximate algorithm.

Let ‖f ‖0 be the number of tokens with non-zero frequency. Define
the probability for token i as

πi = 1
‖f ‖0

, if i ∈ supp f

πi = 0, otherwise

We assume that f 6= 0.
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The overall idea
We will sample substreams randomly in such a way that there is a
good chance that one is strictly 1-sparse. We will run a sparse
recovery algorithm on each substream.

Our method for achieving this is called “geometric sampling" as each
substream samples tokens with geometrically decreasing probability.

We will use our sparse recovery and detection algorithm to report the
index of the token with non-zero frequency.

The reported token will be uniformly sampled from all tokens with
non-zero frequency.
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`0-sampling algorithm
Where log n is written it should be read as dlog2 ne. We will write D`

for the `th instance of a 1-sparse recovery algorithm.

initialise
for each ` from 0 to log n

choose h` : [n]→ {0, 1}` uniformly at random
set D` = 0

process(j , c)
for each ` from 0 to log n

if h`(j) = 0 then # probability 2−`
feed (j , c) to D` # 1-sparse recovery

output
for each ` from 0 to log n

if D` reports strictly 1-sparse
output (i , `) and stop # token, frequency

output FAIL



`0-sampling algorithm example

1 2 3 4 6 7 8
5

Figure: Frequency vector f

• The non-zero frequency item
tokens are 2, 5, 7.

• We make 4 substreams.
• With high probability we
return 7.

` Prob. Tokens included

` = 0 1 2, 5, 7

` = 1 1/2 2, 5

` = 2 1/4 7

` = 3 1/8 2

process(j , c)
for each ` from 0 to log n

if h`(j) = 0 then
feed (j , c) to D`
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`0-sampling analysis I
• Let d = |supp(f )|. We want to compute a lower bound for the
probability that a substream is strictly 1-sparse.

• For a fixed level `, define indicator r.v. Xj = 1 if token j is selected in
level `. Let S = X1 + · · ·+ Xd . The event that the substream is
strictly 1-sparse is {S = 1}.

• We have EXj = p, q = 1− p and E(XjXk) = p2 if j 6= k and
p = p2 + pq otherwise.

• By Chebyshev,
Pr(S 6= 1) = Pr(|S − 1| ≥ 1) ≤ E(S − 1)2

= E(S2)− 2E(S) + 1
=

∑
j,k∈[d]

E(XjXk)− 2
∑
j∈[d]

E(Xj) + 1

= d2p2 + dpq − 2dp + 1
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`0-sampling analysis II
• Pr(S 6= 1) = Pr(|S − 1| ≥ 1) ≤ d2p2 + dpq − 2dp + 1.

• The probability that a substream is strictly 1-sparse is therefore at
least 2dp − d2p2 − dpq = dp(1− (d − 1)p) > dp(1− dp).

• If p = c/d for c ∈ (0, 1) then the probability that a substream is
strictly 1-sparse is at least c(1− c).

• Consider level ` such that 1
4d ≤

1
2` <

1
2d . This constrains ` to be a

unique value for any d ≥ 1.

• We therefore have that the probability that a substream at such a
level ` is strictly 1-sparse is at least 1

4(1− 1
4) = 3/16 > 1/8.
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`0-sampling analysis III
• By repeating the whole procedure O(log(1/δ)) times we reduce the

probability that no substream is 1-sparse to O(δ). To see this,
(7

8)x = δ =⇒ x = log2(1/δ)/ log2(8/7).

• Each run of the 1-sparse algorithm fails with probability O(1/n2) and
so the overall probability of failure is O( log n log(1/δ)

n2 ).
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`0-sampling summary
The `0 sampling problem asks us to sample independently and
uniformly from the tokens with non-zero frequency.

We use geometric sampling and the 1-sparse recovery and detection
algorithm.

The space is O(log n) · O(log(1/δ)) · O(log n + log M) =
O(log n · log(1/δ)(log n + log M)) bits.

The time per arriving token, count pair is O(log n · log(1/δ)).

The probably of failure, because one of the 1-sparse algorithm
instances gives a false positive is O( log n·log(1/δ)

n2 ).

This `0-sampling problem will have applications to graph streaming
which you will see next.
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