Topics in TCS

Frequency estimation via sketching

Raphaël Clifford

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

It is deterministic (good \checkmark) but only works in the cash register model.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

It is deterministic (good \checkmark) but only works in the cash register model.

We will change the definition to ask for an estimate of the frequency of occurrence for any token queried.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

It is deterministic (good \checkmark) but only works in the cash register model.

We will change the definition to ask for an estimate of the frequency of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

It is deterministic (good \checkmark) but only works in the cash register model.

We will change the definition to ask for an estimate of the frequency of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.
Our sketches will be linear which will mean we can extend them to the turnstile model. We can also combine them easily by adding.

Frequent items via sketching

We return to the problem of finding frequent items. Our previous definition was: Given a parameter k, find the set of symbols with frequency greater than m / k.
The Misra-Gries algorithm is one-pass and runs in $O(k(\log m+\log n))$ bits of space and $O(m \log n)$ time.

It is deterministic (good \checkmark) but only works in the cash register model.

We will change the definition to ask for an estimate of the frequency of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.
Our sketches will be linear which will mean we can extend them to the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

CountSketch

The sketch is a 2D-array C with t rows and k columns. All hash functions are chosen from a pairwise independent family.

CountSketch

The sketch is a 2D-array C with t rows and k columns. All hash functions are chosen from a pairwise independent family.

```
stream }\langle\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{m}{}\rangle,\mp@subsup{a}{i}{}\in[n
initialise C[1\ldotst][1\ldotsk]=0
choose hash functions }\mp@subsup{h}{1}{},\ldots..\mp@subsup{h}{t}{}:[n]->[k
choose hash function }\mp@subsup{g}{1}{},\ldots,\mp@subsup{g}{t}{}:[n]->{-1,1
CountSketch(ai)
for each j\in[t]
    C[j,h;}(\mp@subsup{a}{i}{})]+=\mp@subsup{c}{i}{}\mp@subsup{g}{j}{}(\mp@subsup{a}{i}{}
return }\mp@subsup{\hat{f}}{\mp@subsup{a}{i}{}}{}=\operatorname{median}{\mp@subsup{g}{j}{}(\mp@subsup{a}{i}{})C[j,\mp@subsup{h}{j}{}(\mp@subsup{a}{i}{})]
```

c_{i} is the number of instances of a_{i}. In the turnstile model this can be either positive of negative.

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

 0000000000°

CountSketch $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i} g_{j}\left(a_{i}\right)
$$

CountSketch - worked example

return $\hat{f}_{a_{i}}=\operatorname{median}\left\{g_{j}\left(a_{i}\right) C\left[j, h_{j}\left(a_{i}\right)\right]\right\}$

CountSketch - worked example

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

return $\hat{f}_{a_{i}}=\operatorname{median}\left\{g_{j}\left(a_{i}\right) C\left[j, h_{j}\left(a_{i}\right)\right]\right\}$

$\hat{f}_{\bigcirc}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 3,1 \cdot 5)$

CountSketch - worked example

return $\hat{f}_{a_{i}}=\operatorname{median}\left\{g_{j}\left(a_{i}\right) C\left[j, h_{j}\left(a_{i}\right)\right]\right\}$

$\hat{f}_{\bigcirc}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 3,1 \cdot 5)$
$\hat{f}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(-1 \cdot-3,1 \cdot 3)$

CountSketch - worked example

					h_{1}, g_{1}	h_{2}, g_{2}
	1	2	3	\bigcirc	$2,+$	1, +
	++	++-++	---	\bigcirc	3, -	$2,+$
h_{1}	+++++	+- +	+--+	\bigcirc	1,+	3, -
h_{2}				\bigcirc	$2,-$	3, +

return $\hat{f}_{a_{i}}=\operatorname{median}\left\{g_{j}\left(a_{i}\right) C\left[j, h_{j}\left(a_{i}\right)\right]\right\}$

$\hat{f}_{\bigcirc}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 3,1 \cdot 5)$
$\hat{f} \bigcirc=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(-1 \cdot-3,1 \cdot 3)$
$\hat{f}=\operatorname{median}\left(g_{1}(\bullet) C\left[1, h_{1}(\bullet)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 2,-1 \cdot 0)$

CountSketch - worked example

return $\hat{f}_{a_{i}}=\operatorname{median}\left\{g_{j}\left(a_{i}\right) C\left[j, h_{j}\left(a_{i}\right)\right]\right\}$
$\hat{f}_{\bigcirc}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 3,1 \cdot 5)$
$\hat{f}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(-1 \cdot-3,1 \cdot 3)$
$\hat{f}_{\boldsymbol{O}}=\operatorname{median}\left(g_{1}(\boldsymbol{\bullet}) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(1 \cdot 2,-1 \cdot 0)$
$\hat{f}_{\boldsymbol{O}}=\operatorname{median}\left(g_{1}(\bigcirc) C\left[1, h_{1}(\bigcirc)\right], g_{2}(\bigcirc) C\left[2, h_{2}(\bigcirc)\right]\right)=\operatorname{median}(-1 \cdot 3,1 \cdot 0)$

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.
For each token j, define indicator r.v. $Y_{j}=1$ iff $h(j)=h(a)$.

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.
For each token j, define indicator r.v. $Y_{j}=1$ iff $h(j)=h(a)$.
Token j contributes $f_{j} \cdot g(j)$ to $C[h(a)]$ iff $h(j)=h(a)$.

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.
For each token j, define indicator r.v. $Y_{j}=1$ iff $h(j)=h(a)$.
Token j contributes $f_{j} \cdot g(j)$ to $C[h(a)]$ iff $h(j)=h(a)$.
Therefore

$$
X=g(a) \sum_{j=1}^{n} f_{j} g(j) Y_{j}=f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}
$$

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.
For each token j, define indicator r.v. $Y_{j}=1$ iff $h(j)=h(a)$.
Token j contributes $f_{j} \cdot g(j)$ to $C[h(a)]$ iff $h(j)=h(a)$.
Therefore

$$
X=g(a) \sum_{j=1}^{n} f_{j} g(j) Y_{j}=f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}
$$

As g and h are independent and g is from a pairwise independent family,

$$
\mathbb{E}\left[g(a) g(j) Y_{j}\right]=\mathbb{E}(g(a)) \cdot \mathbb{E}(g(j)) \cdot \mathbb{E}\left(Y_{j}\right)=0 \cdot 0 \cdot \mathbb{E}\left(Y_{j}\right)=0
$$

CountSketch - Analysis I

To start, let us look just at an arbitrary row of C. We will show that for each row CountSketch gives an unbiased estimate. Define $C[x]=C[1, x]$.
Let $X=\hat{f}_{a}$ be the output for query a.
For each token j, define indicator r.v. $Y_{j}=1$ iff $h(j)=h(a)$.
Token j contributes $f_{j} \cdot g(j)$ to $C[h(a)]$ iff $h(j)=h(a)$.
Therefore

$$
X=g(a) \sum_{j=1}^{n} f_{j} g(j) Y_{j}=f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}
$$

As g and h are independent and g is from a pairwise independent family,

$$
\mathbb{E}\left[g(a) g(j) Y_{j}\right]=\mathbb{E}(g(a)) \cdot \mathbb{E}(g(j)) \cdot \mathbb{E}\left(Y_{j}\right)=0 \cdot 0 \cdot \mathbb{E}\left(Y_{j}\right)=0
$$

By linearity of expectation

$$
\mathbb{E}(X)=f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]=f_{a}
$$

CountSketch - Analysis Ila

We will now derive the variance of our estimator $X=\hat{f}$. Recall $Y_{j}=1$ iff $h(j)=h(a)$.

CountSketch - Analysis Ila

We will now derive the variance of our estimator $X=\hat{f}$. Recall $Y_{j}=1$ iff $h(j)=h(a)$.

$$
\operatorname{var}(X)=0+\operatorname{var}\left[g(a) \sum_{j \in[n] \backslash\{a\}} f_{j} \cdot g(j) Y_{j}\right]
$$

CountSketch - Analysis Ila

We will now derive the variance of our estimator $X=\hat{f}$. Recall $Y_{j}=1$ iff $h(j)=h(a)$.

$$
\begin{aligned}
\operatorname{var}(X)= & 0+\operatorname{var}\left[g(a) \sum_{j \in[n] \backslash\{a\}} f_{j} \cdot g(j) Y_{j}\right] \\
= & \mathbb{E}\left[\begin{array}{l}
\left.g(a)^{2} \sum_{j \in[n] \backslash\{a\}} f_{j}^{2} Y_{j}^{2}+\sum_{\substack{j \in[n] \backslash\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]- \\
\\
{\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2}}
\end{array},\right.
\end{aligned}
$$

CountSketch - Analysis Ila

We will now derive the variance of our estimator $X=\hat{f}$. Recall $Y_{j}=1$ iff $h(j)=h(a)$.

$$
\begin{aligned}
\operatorname{var}(X)= & 0+\operatorname{var}\left[g(a) \sum_{j \in[n] \backslash\{a\}} f_{j} \cdot g(j) Y_{j}\right] \\
= & \mathbb{E}\left[g(a)^{2} \sum_{j \in[n] \backslash\{a\}} f_{j}^{2} Y_{j}^{2}+\sum_{\substack{j \in[n] \backslash\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]- \\
& {\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2} }
\end{aligned}
$$

We will need two facts to simplify these terms.

CountSketch - Analysis IIb

$$
\begin{gathered}
\operatorname{var}(X)=\mathbb{E}\left[\begin{array}{c}
\left.g(a)^{2} \sum_{j \in[n] \backslash\{a\}} f_{j}^{2} Y_{j}^{2}+\sum_{\substack{j \in[n] \mid\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]- \\
{\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2}}
\end{array},\right.
\end{gathered}
$$

CountSketch - Analysis IIb

$$
\begin{gathered}
\operatorname{var}(X)=\mathbb{E}\left[\begin{array}{c}
\left.g(a)^{2} \sum_{\substack{j \in[n] \backslash\{a\}}} f_{j}^{2} Y_{j}^{2}+\sum_{\substack{j \in[n] \backslash\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]- \\
{\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2}}
\end{array},\right.
\end{gathered}
$$

Now, the two facts:

$$
\text { 1. } \mathbb{E}\left(Y_{j}^{2}\right)=\mathbb{E}\left(Y_{j}\right)=\operatorname{Pr}(h(j)=h(a))=\frac{1}{k} .
$$

$$
\text { 2. } \mathbb{E}\left(g(i) g(j) Y_{i} Y_{j}\right)=\mathbb{E}(g(i)) \cdot \mathbb{E}(g(j)) \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0 \cdot 0 \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0
$$

CountSketch - Analysis IIb

$$
\begin{gathered}
\operatorname{var}(X)=\mathbb{E}\left[\begin{array}{c}
\left.g(a)^{2} \sum_{\substack{j[n] \backslash\{a\}}} f_{j}^{2} Y_{j}^{2}+\sum_{\substack{j \in[n] \backslash\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]- \\
{\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2}}
\end{array},\right.
\end{gathered}
$$

Now, the two facts:

$$
\begin{aligned}
& \text { 1. } \mathbb{E}\left(Y_{j}^{2}\right)=\mathbb{E}\left(Y_{j}\right)=\operatorname{Pr}(h(j)=h(a))=\frac{1}{k} \text {. } \\
& \text { 2. } \mathbb{E}\left(g(i) g(j) Y_{i} Y_{j}\right)=\mathbb{E}(g(i)) \cdot \mathbb{E}(g(j)) \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0 \cdot 0 \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0
\end{aligned}
$$

Therefore,

$$
\operatorname{var}(X)=\sum_{j \in[n] \backslash\{a\}} \frac{f_{j}^{2}}{k}+0-0
$$

$$
\begin{aligned}
& \text { CountSketch - Analysis IIb } \\
& \operatorname{var}(X)=\mathbb{E}\left[\underset{\substack{j \in[n] \backslash\{a\}}}{\left.g(a)^{2} \sum_{j}^{2} f_{j}^{2}+\sum_{\substack{j \in[n] \backslash\{a\} \\
i \neq j}} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right]-}\right] \\
& {\left[\sum_{j \in[n] \backslash\{a\}} f_{j} \mathbb{E}\left[g(a) g(j) Y_{j}\right]\right]^{2}}
\end{aligned}
$$

Now, the two facts:

$$
\begin{aligned}
& \text { 1. } \mathbb{E}\left(Y_{j}^{2}\right)=\mathbb{E}\left(Y_{j}\right)=\operatorname{Pr}(h(j)=h(a))=\frac{1}{k} \text {. } \\
& \text { 2. } \mathbb{E}\left(g(i) g(j) Y_{i} Y_{j}\right)=\mathbb{E}(g(i)) \cdot \mathbb{E}(g(j)) \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0 \cdot 0 \cdot \mathbb{E}\left(Y_{i} Y_{j}\right)=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{j \in[n] \backslash\{a\}} \frac{f_{j}^{2}}{k}+0-0 \\
& =\frac{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}{k} \text { where } \boldsymbol{f} \text { is the array of frequencies }
\end{aligned}
$$

CountSketch - Analysis III

Using the variance $\operatorname{var}(X)=\frac{\|f\|_{2}^{2}-f_{a}^{2}}{k}$ we can apply Chebyshev.

CountSketch - Analysis III

Using the variance $\operatorname{var}(X)=\frac{\|f\|_{2}^{2}-f_{a}^{2}}{k}$ we can apply Chebyshev.

$$
\begin{array}{rlr}
\operatorname{Pr}\left(\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) & =\operatorname{Pr}\left(|X-\mathbb{E}(X)| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) \\
& \leq \frac{\operatorname{var}(X)}{\epsilon^{2}\left(\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}\right)} \\
& =\frac{1}{k \epsilon^{2}} \\
& =\frac{1}{3} \quad \quad\left(\text { set } k=3 / \epsilon^{2}\right)
\end{array}
$$

CountSketch - Analysis III

Using the variance $\operatorname{var}(X)=\frac{\|f\|_{2}^{2}-f_{a}^{2}}{k}$ we can apply Chebyshev.

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) & =\operatorname{Pr}\left(|X-\mathbb{E}(X)| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) \\
& \leq \frac{\operatorname{var}(X)}{\epsilon^{2}\left(\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}\right)} \\
& =\frac{1}{k \epsilon^{2}} \\
& =\frac{1}{3} \quad \quad\left(\text { set } k=3 / \epsilon^{2}\right)
\end{aligned}
$$

Using the notation \boldsymbol{f}_{-j} for \boldsymbol{f} with the j th element dropped, $\left\|\boldsymbol{f}_{-j}\right\|_{2}^{2}=\|\boldsymbol{f}\|_{2}^{2}-f_{j}^{2}$.

CountSketch - Analysis III

Using the variance $\operatorname{var}(X)=\frac{\|f\|_{2}^{2}-f_{a}^{2}}{k}$ we can apply Chebyshev.

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) & =\operatorname{Pr}\left(|X-\mathbb{E}(X)| \geq \epsilon \sqrt{\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}}\right) \\
& \leq \frac{\operatorname{var}(X)}{\epsilon^{2}\left(\|\boldsymbol{f}\|_{2}^{2}-f_{a}^{2}\right)} \\
& =\frac{1}{k \epsilon^{2}} \\
& =\frac{1}{3} \quad \quad\left(\text { set } k=3 / \epsilon^{2}\right)
\end{aligned}
$$

Using the notation \boldsymbol{f}_{-j} for \boldsymbol{f} with the j th element dropped, $\left\|\boldsymbol{f}_{-j}\right\|_{2}^{2}=\|\boldsymbol{f}\|_{2}^{2}-f_{j}^{2}$. And so,

$$
\operatorname{Pr}\left(\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right) \leq \frac{1}{3}
$$

CountSketch - Analysis IV

So how good is our sketch that takes the median?

CountSketch - Analysis IV

So how good is our sketch that takes the median?
We take the median of $\left|\hat{f}_{a}-f_{a}\right|$ for t different independent runs. If this is at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ then at least $t / 2$ iterations are that big.

CountSketch - Analysis IV

So how good is our sketch that takes the median?
We take the median of $\left|\hat{f}_{a}-f_{a}\right|$ for t different independent runs. If this is at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ then at least $t / 2$ iterations are that big.

We show that this is exponentially unlikely to happen as a function of the number of iterations, t.

CountSketch - Analysis IV

So how good is our sketch that takes the median?
We take the median of $\left|\hat{f}_{a}-f_{a}\right|$ for t different independent runs. If this is at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ then at least $t / 2$ iterations are that big.

We show that this is exponentially unlikely to happen as a function of the number of iterations, t.

For the ith iteration, let $Z_{i}=1$ if $\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ and 0 otherwise.

CountSketch - Analysis IV

So how good is our sketch that takes the median?
We take the median of $\left|\hat{f}_{a}-f_{a}\right|$ for t different independent runs. If this is at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ then at least $t / 2$ iterations are that big.

We show that this is exponentially unlikely to happen as a function of the number of iterations, t.

For the ith iteration, let $Z_{i}=1$ if $\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ and 0 otherwise. Using Chernoff's bound with $\mu=t / 3$

$$
\begin{array}{rlr}
\operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \geq(1+\delta) \mu\right) \leq \exp \left(-\delta^{2} \mu / 3\right) & =\exp \left(-\delta^{2} t / 9\right) \\
\operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \geq(1+1 / 2) \mu\right) \leq \exp \left(-(1 / 2)^{2} t / 9\right) & =\exp (-t / 36)
\end{array}
$$

CountSketch - Analysis IV

So how good is our sketch that takes the median?
We take the median of $\left|\hat{f}_{a}-f_{a}\right|$ for t different independent runs. If this is at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ then at least $t / 2$ iterations are that big.

We show that this is exponentially unlikely to happen as a function of the number of iterations, t.

For the ith iteration, let $Z_{i}=1$ if $\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ and 0 otherwise. Using Chernoff's bound with $\mu=t / 3$

$$
\begin{array}{rlr}
\operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \geq(1+\delta) \mu\right) \leq \exp \left(-\delta^{2} \mu / 3\right) & =\exp \left(-\delta^{2} t / 9\right) \\
\operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \geq(1+1 / 2) \mu\right) \leq \exp \left(-(1 / 2)^{2} t / 9\right) & =\exp (-t / 36)
\end{array}
$$

For an arbitrary token a, the probability of being further than $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ from the correct frequency is at most $\exp (-t / 36)$.

CountSketch - Space/Time

We need $O(\log m)$ bits per counter in our sketch. There are $t k$ counters.

CountSketch - Space/Time

We need $O(\log m)$ bits per counter in our sketch. There are $t k$ counters.

We store t pairwise independent hash functions making $O(t \log n)$ bits.

CountSketch - Space/Time

We need $O(\log m)$ bits per counter in our sketch. There are $t k$ counters.

We store t pairwise independent hash functions making $O(t \log n)$ bits.

Overall space is therefore $O(t \log n+t k \log m)$ bits.

CountSketch - Space/Time

We need $O(\log m)$ bits per counter in our sketch. There are $t k$ counters.

We store t pairwise independent hash functions making $O(t \log n)$ bits.

Overall space is therefore $O(t \log n+t k \log m)$ bits.

With $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\lceil\ln 1 / \delta\rceil$, this equals

$$
O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta} \cdot(\log m+\log n)\right) \text { bits }
$$

CountSketch - Space/Time

We need $O(\log m)$ bits per counter in our sketch. There are $t k$ counters.

We store t pairwise independent hash functions making $O(t \log n)$ bits.

Overall space is therefore $O(t \log n+t k \log m)$ bits.

With $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\lceil\ln 1 / \delta\rceil$, this equals

$$
O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta} \cdot(\log m+\log n)\right) \text { bits }
$$

Running time: one-pass and $O(t)$ time per token.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the frequency of the tokens in a stream.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the frequency of the tokens in a stream.

Once ϵ and δ are decided we can set t and k accordingly.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the frequency of the tokens in a stream.

Once ϵ and δ are decided we can set t and k accordingly.

The running time is $O(t)$ time per token.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the frequency of the tokens in a stream.

Once ϵ and δ are decided we can set t and k accordingly.

The running time is $O(t)$ time per token.

The space usage is $O(t \log n+t k \log m)$ bits.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the frequency of the tokens in a stream.

Once ϵ and δ are decided we can set t and k accordingly.

The running time is $O(t)$ time per token.

The space usage is $O(t \log n+t k \log m)$ bits.

Assuming we set $k=3 / \epsilon^{2}$, for an arbitrary token a, the probability that CountSketch's estimate is further than $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}$ from the correct frequency is at most $\exp (-t / 36)$.

Count-Min sketch

The sketch is a 2D-array C with t rows and k columns. All hash functions are chosen from a pairwise independent family.

Count-Min sketch

The sketch is a 2D-array C with t rows and k columns. All hash functions are chosen from a pairwise independent family.

```
stream }\langle\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{m}{}\rangle,\mp@subsup{a}{i}{}\in[n
initialise C[1..t][1..k]=0
choose hash functions }\mp@subsup{h}{1}{},\ldots..\mp@subsup{h}{t}{}:[n]->[k
Count-Min(ai)
for each j\in[t]
    C[j, hj(ai)]+=c
return }\mp@subsup{\hat{f}}{a}{}=\mp@subsup{\operatorname{min}}{1\leqi\leqt}{}C[i,\mp@subsup{h}{i}{}(a)
```

c_{i} is the number of instances of a_{i}. In the turnstile model this can be either positive of negative.

Count-Min - worked example

	1	2	3		h_{1}	h_{2}	h_{3}
h_{1}			1	2	3		
h_{2}							

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

 $\bigcirc 00^{\circ}$-○○○○○

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

 $0000^{\circ} 0000$ -

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

 $\bigcirc \bigcirc \bigcirc 0^{\bullet}$-○○○

Count-Min $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

 -○○○○○○○○

Count-Min $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example

 00000° -

Count-Min $\left(a_{i}\right)$
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example $\bigcirc 0000$ ○○○○

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example $\bigcirc \bigcirc \bigcirc \bigcirc ๐^{\circ}$

Count-Min(a_{i})
for each $j \in[t]$

$$
C\left[j, h_{j}\left(a_{i}\right)\right]+=c_{i}
$$

Count-Min - worked example $\bigcirc 00000000^{\circ}$

	h_{1}	h_{2}	h_{3}
	1	2	3
	2	1	1
	1	1	1
	3	3	2

return $\hat{f}_{a}=\min _{1 \leq i \leq t} C\left[i, h_{i}(a)\right]$

Count-Min - worked example

	h_{1}	h_{2}	h_{3}
	1	2	3
	2	1	1
	1	1	1
	3	3	2

return $\hat{f}_{a}=\min _{1 \leq i \leq t} C\left[i, h_{i}(a)\right]$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (7,5,5)=5 \checkmark$

Count-Min - worked example

	h_{1}	h_{2}	h_{3}
	1	2	3
	2	1	1
	1	1	1
	3	3	2

return $\hat{f}_{a}=\min _{1 \leq i \leq t} C\left[i, h_{i}(a)\right]$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (7,5,5)=5 \checkmark$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (3,5,5)=3 \checkmark$

Count-Min - worked example

	h_{1}	h_{2}	h_{3}
	1	2	3
	2	1	1
	1	1	1
	3	3	2

return $\hat{f}_{a}=\min _{1 \leq i \leq t} C\left[i, h_{i}(a)\right]$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (7,5,5)=5 \checkmark$
$\hat{f} \bigcirc=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (3,5,5)=3 \checkmark$
$\hat{f}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc)\right)=\min (7,5,5)=5\right.$

Count-Min - worked example

	h_{1}	h_{2}	h_{3}
	1	2	3
	2	1	1
	1	1	1
	3	3	2

return $\hat{f}_{a}=\min _{1 \leq i \leq t} C\left[i, h_{i}(a)\right]$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (7,5,5)=5 \checkmark$
$\hat{f}_{\bigcirc}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (3,5,5)=3 \checkmark$
$\hat{f}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc)\right)=\min (7,5,5)=5\right.$
$\hat{f}=\min \left(C\left[1, h_{1}(\bigcirc)\right], C\left[2, h_{2}(\bigcirc)\right], C\left[3, h_{3}(\bigcirc]\right)\right)=\min (2,2,2)=2 \checkmark$

Count-Min - Analysis I

For simplicity, consider positive counts of tokens (the cash register model) so that $\hat{f}_{a} \geq f_{a}$ for all tokens a.

Count-Min - Analysis I

For simplicity, consider positive counts of tokens (the cash register model) so that $\hat{f}_{a} \geq f_{a}$ for all tokens a.
Let $Y_{i, j}=1$ if $h_{i}(j)=h_{i}(a)$ and 0 otherwise. Note that token j contributes to $C\left[i, h_{i}(a)\right]$ iff $Y_{i, j}=1$.

Count-Min - Analysis I

For simplicity, consider positive counts of tokens (the cash register model) so that $\hat{f}_{a} \geq f_{a}$ for all tokens a.
Let $Y_{i, j}=1$ if $h_{i}(j)=h_{i}(a)$ and 0 otherwise. Note that token j contributes to $C\left[i, h_{i}(a)\right]$ iff $Y_{i, j}=1$.

Let r.v. X_{i} be the excess count in cell $C\left[i, h_{i}(a)\right]$. That is

$$
X_{i}=\sum_{j \in[n] \backslash\{a\}} f_{j} Y_{i, j}
$$

Count-Min - Analysis I

For simplicity, consider positive counts of tokens (the cash register model) so that $\hat{f}_{a} \geq f_{a}$ for all tokens a.
Let $Y_{i, j}=1$ if $h_{i}(j)=h_{i}(a)$ and 0 otherwise. Note that token j contributes to $C\left[i, h_{i}(a)\right]$ iff $Y_{i, j}=1$.

Let r.v. X_{i} be the excess count in cell $C\left[i, h_{i}(a)\right]$. That is

$$
\begin{gathered}
X_{i}=\sum_{j \in[n] \backslash\{a\}} f_{j} Y_{i, j} \\
\mathbb{E}\left(X_{i}\right)=\sum_{j \in[n] \backslash\{a\}} f_{j} Y_{i, j}=\sum_{j \in[n] \backslash\{a\}} \frac{f_{j}}{k}=\frac{\|\boldsymbol{f}\|_{1}-f_{a}}{k}=\frac{\left\|f_{-a}\right\|_{1}}{k}
\end{gathered}
$$

Count-Min - Analysis I

For simplicity, consider positive counts of tokens (the cash register model) so that $\hat{f}_{a} \geq f_{a}$ for all tokens a.
Let $Y_{i, j}=1$ if $h_{i}(j)=h_{i}(a)$ and 0 otherwise. Note that token j contributes to $C\left[i, h_{i}(a)\right]$ iff $Y_{i, j}=1$.

Let r.v. X_{i} be the excess count in cell $C\left[i, h_{i}(a)\right]$. That is

$$
\begin{gathered}
X_{i}=\sum_{j \in[n] \backslash\{a\}} f_{j} Y_{i, j} \\
\mathbb{E}\left(X_{i}\right)=\sum_{j \in[n] \backslash\{a\}} f_{j} Y_{i, j}=\sum_{j \in[n] \backslash\{a\}} \frac{f_{j}}{k}=\frac{\|\boldsymbol{f}\|_{1}-f_{a}}{k}=\frac{\left\|f_{-a}\right\|_{1}}{k}
\end{gathered}
$$

By Markov's inequality

$$
\operatorname{Pr}\left(X_{i} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right) \leq \frac{\left\|\boldsymbol{f}_{-a}\right\|_{1}}{k \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}}=\frac{1}{2}
$$

set $k=2 / \epsilon$

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \frac{1}{2^{t}}=\delta
$$

$$
\text { set } t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil
$$

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \frac{1}{2^{t}}=\delta \quad \text { set } t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil
$$

$k=2 / \epsilon, t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil$ gives total space in bits

$$
O\left(\frac{1}{\epsilon} \log \frac{1}{\delta} \cdot(\log m+\log n)\right)
$$

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \frac{1}{2^{t}}=\delta \quad \text { set } t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil
$$

$k=2 / \epsilon, t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil$ gives total space in bits

$$
O\left(\frac{1}{\epsilon} \log \frac{1}{\delta} \cdot(\log m+\log n)\right)
$$

The space usage is better than CountSketch by a factor of $1 / \epsilon$.

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \frac{1}{2^{t}}=\delta \quad \text { set } t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil
$$

$k=2 / \epsilon, t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil$ gives total space in bits

$$
O\left(\frac{1}{\epsilon} \log \frac{1}{\delta} \cdot(\log m+\log n)\right)
$$

The space usage is better than CountSketch by a factor of $1 / \epsilon$. Count-Min's error probability is bounded by $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ instead of $\epsilon\left\|\boldsymbol{f}_{-\mathrm{a}}\right\|_{2}$ for CountSketch.

Count-Min - Analysis II

We have a bound for a single counter. Over t counters the reported excess is the minimum over all X_{i}. We can now derive the probability that all the excesses are at least $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ directly.

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \frac{1}{2^{t}}=\delta \quad \text { set } t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil
$$

$k=2 / \epsilon, t=\left\lceil\log _{2}\left(\frac{1}{\delta}\right)\right\rceil$ gives total space in bits

$$
O\left(\frac{1}{\epsilon} \log \frac{1}{\delta} \cdot(\log m+\log n)\right)
$$

The space usage is better than CountSketch by a factor of $1 / \epsilon$. Count-Min's error probability is bounded by $\epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}$ instead of $\epsilon\left\|\boldsymbol{f}_{-\mathrm{a}}\right\|_{2}$ for CountSketch.
For all vectors $z \in \mathbb{R}^{n}$, we have that $\|z\|_{1} \geq\|z\|_{2}$.

Frequency estimation - space/time summary

We have seen two one-pass sketching algorithms for frequency estimation.

Frequency estimation - space/time summary

We have seen two one-pass sketching algorithms for frequency estimation.
CountSketch runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.

Frequency estimation - space/time summary

We have seen two one-pass sketching algorithms for frequency estimation.

CountSketch runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.
CountSketch space usage is

$$
O(t \log n+t k \log m)=O\left(1 / \epsilon^{2} \log (1 / \delta)(\log m+\log n)\right. \text { bits }
$$

bits if $k=\left\lceil 3 / \epsilon^{2}\right\rceil$.

Frequency estimation - space/time summary

We have seen two one-pass sketching algorithms for frequency estimation.

CountSketch runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.
CountSketch space usage is

$$
O(t \log n+t k \log m)=O\left(1 / \epsilon^{2} \log (1 / \delta)(\log m+\log n)\right. \text { bits }
$$

bits if $k=\left\lceil 3 / \epsilon^{2}\right\rceil$.
Count-Min runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.

Frequency estimation - space/time summary

We have seen two one-pass sketching algorithms for frequency estimation.
CountSketch runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.
CountSketch space usage is

$$
O(t \log n+t k \log m)=O\left(1 / \epsilon^{2} \log (1 / \delta)(\log m+\log n)\right. \text { bits }
$$

bits if $k=\left\lceil 3 / \epsilon^{2}\right\rceil$.
Count-Min runs in $O(t)=O(\log 1 / \delta)$ time per token if $t=\lceil 1 / \delta\rceil$.
Count-Min space usage is

$$
O(t \log n+t k \log m)=O(1 / \epsilon \log (1 / \delta)(\log m+\log n)
$$

bits if $k=\lceil 2 / \epsilon\rceil$. This is a factor of $1 / \epsilon$ improvement.

Frequency estimation - estimation error summary
CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Frequency estimation - estimation error summary

CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Count-Min: with $k=\lceil 2 / \epsilon\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \delta
$$

Frequency estimation - estimation error summary

CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Count-Min: with $k=\lceil 2 / \epsilon\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \delta
$$

For all vectors $z \in \mathbb{R}^{n}$, we have that $\|z\|_{1} \geq\|z\|_{2}$ so the estimation error is worse for Count-Min.

Frequency estimation - estimation error summary

CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Count-Min: with $k=\lceil 2 / \epsilon\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \delta
$$

For all vectors $z \in \mathbb{R}^{n}$, we have that $\|z\|_{1} \geq\|z\|_{2}$ so the estimation error is worse for Count-Min.
By setting $k=1 / \epsilon$, Misra-Gries gives us an estimate

$$
f_{j}-\epsilon\|\boldsymbol{f}\|_{1} \leq \hat{f}_{j} \leq f_{j} \text { for every } j \in[n]
$$

Frequency estimation - estimation error summary

CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Count-Min: with $k=\lceil 2 / \epsilon\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \delta
$$

For all vectors $z \in \mathbb{R}^{n}$, we have that $\|z\|_{1} \geq\|z\|_{2}$ so the estimation error is worse for Count-Min.
By setting $k=1 / \epsilon$, Misra-Gries gives us an estimate

$$
f_{j}-\epsilon\|\boldsymbol{f}\|_{1} \leq \hat{f}_{j} \leq f_{j} \text { for every } j \in[n]
$$

Misra-Gries gives a lower bound on frequency where Count-Min/CountSketch give upper bounds.

Frequency estimation - estimation error summary

CountSketch: with $k=\left\lceil 3 / \epsilon^{2}\right\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{2}\right)\right) \leq \delta
$$

Count-Min: with $k=\lceil 2 / \epsilon\rceil$ and $t=\left\lceil\log _{2}(1 / \delta)\right\rceil$,

$$
\left.\operatorname{Pr}\left(\hat{f}_{a}-f_{a} \geq \epsilon\left\|\boldsymbol{f}_{-a}\right\|_{1}\right)\right) \leq \delta
$$

For all vectors $z \in \mathbb{R}^{n}$, we have that $\|z\|_{1} \geq\|z\|_{2}$ so the estimation error is worse for Count-Min.
By setting $k=1 / \epsilon$, Misra-Gries gives us an estimate

$$
f_{j}-\epsilon\|\boldsymbol{f}\|_{1} \leq \hat{f}_{j} \leq f_{j} \text { for every } j \in[n]
$$

Misra-Gries gives a lower bound on frequency where Count-Min/CountSketch give upper bounds.
Misra-Gries uses $O((1 / \epsilon)(\log m+\log n)$ bits but does not work in the turnstile model (with deletions).

