
Topics in TCS

Appoximate counting

Raphaël Clifford

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Approximate counting - Morris

We are going to consider a much simpler problem. How many circles?

1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15

Just keep a counter! This needs O(logm) bits which is optimal.

So what can we do? Approximate!

stream 〈a1, a2, . . . , am〉
Set x = 0

Morris(ai)
with probability 2−x

set x = x + 1

return 2x-1

Let’s try it on a stream. We get:

x = 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, . . .

These return:
1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 15, 15, 15, . . .

Running time O(m)

Space is ??? (we will see later).

But how accurate is this going to be?

Morris - Quality of estimate

Let r.v. Cn = 2x after n symbols have been read in. We will prove
that E(Cn) = n + 1.

Consider an equivalent although less space efficient algorithm.

stream 〈a1, a2, . . . , am〉
Set c = 1

Simplified-Morris(ai)
with probability 1/c

set c = 2c

return c − 1

Lemma
For all n ≥ 0, E(Cn) = n + 1
var(Cn) = n(n − 1)/2

Morris is therefore an unbiased
estimator for the number of symbols.

But we want to know the probability
of the estimate being really wrong.

We will need the variance for this.

Morris - Quality of estimate

Let r.v. Cn = 2x after n symbols have been read in. We will prove
that E(Cn) = n + 1.

Consider an equivalent although less space efficient algorithm.

stream 〈a1, a2, . . . , am〉
Set c = 1

Simplified-Morris(ai)
with probability 1/c

set c = 2c

return c − 1

Lemma
For all n ≥ 0, E(Cn) = n + 1
var(Cn) = n(n − 1)/2

Morris is therefore an unbiased
estimator for the number of symbols.

But we want to know the probability
of the estimate being really wrong.

We will need the variance for this.

Morris - Quality of estimate

Let r.v. Cn = 2x after n symbols have been read in. We will prove
that E(Cn) = n + 1.

Consider an equivalent although less space efficient algorithm.

stream 〈a1, a2, . . . , am〉
Set c = 1

Simplified-Morris(ai)
with probability 1/c

set c = 2c

return c − 1

Lemma
For all n ≥ 0, E(Cn) = n + 1
var(Cn) = n(n − 1)/2

Morris is therefore an unbiased
estimator for the number of symbols.

But we want to know the probability
of the estimate being really wrong.

We will need the variance for this.

Morris - Quality of estimate

Let r.v. Cn = 2x after n symbols have been read in. We will prove
that E(Cn) = n + 1.

Consider an equivalent although less space efficient algorithm.

stream 〈a1, a2, . . . , am〉
Set c = 1

Simplified-Morris(ai)
with probability 1/c

set c = 2c

return c − 1

Lemma
For all n ≥ 0, E(Cn) = n + 1
var(Cn) = n(n − 1)/2

Morris is therefore an unbiased
estimator for the number of symbols.

But we want to know the probability
of the estimate being really wrong.

We will need the variance for this.

Morris - Quality of estimate

Let r.v. Cn = 2x after n symbols have been read in. We will prove
that E(Cn) = n + 1.

Consider an equivalent although less space efficient algorithm.

stream 〈a1, a2, . . . , am〉
Set c = 1

Simplified-Morris(ai)
with probability 1/c

set c = 2c

return c − 1

Lemma
For all n ≥ 0, E(Cn) = n + 1
var(Cn) = n(n − 1)/2

Morris is therefore an unbiased
estimator for the number of symbols.

But we want to know the probability
of the estimate being really wrong.

We will need the variance for this.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.

I After the second token, E(C2) = 1
2 · 2

2 + 1
22 = 3. The variable c will

be set to 4 with probability 1
2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Expectation

Let us look at the first two symbols that arrive.

I After the first token, E(C1) = 2. The variable c will then be set to 2.
I After the second token, E(C2) = 1

2 · 2
2 + 1

22 = 3. The variable c will
be set to 4 with probability 1

2 .

Lemma (Expectation of Morris’s algorithm)
For all n ≥ 0, E(Cn) = n + 1

Proof.

Let r.v. Zi = 1 if c is increased when the ith symbol arrives and 0
otherwise.

Pr(Zi = 1) = 1/Ci and Ci+1 = (1 + Zi)Ci .

If we fix Ci then E(1 + Zi)Ci = (1 + 1
Ci

)Ci = Ci + 1.

Now take expectations of both sides: E(Ci+1) = E(Ci) + 1

Therefore E(Cn) = n + 1 since E(C0) = 1.

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Analysis of Variance

Lemma (Variance of Morris’s algorithm)
For all n ≥ 0, var(Cn) = n(n − 1)/2

Proof.

C 2
i+1 = (1 + 2Zi + Z 2

i)C 2
i = (1 + 3Zi)C

2
i

If we fix Ci then E((1 + 3Zi)C
2
i) = (1 + 3

Ci
)C 2

i = C 2
i + 3Ci .

Therefore E(C 2
i+1) = E(C 2

i) + 3E(Ci) = E(C 2
i) + 3(i + 1).

Since E(C 2
0) = 1 we have E(C 2

n) = 1 + 3n(n+1)
2 .

Finally, var(Cn) = E(C 2
n)− (E(Cn))2 = n(n−1)

2

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - Median of Means

We would like to make it less likely that our estimate is a long way
off. It won’t work to take the median of k independent runs as we did
for Tidemark because the variance of our estimator is too large.

What can we do?

Take the mean to reduce the variance, then take the median.

Repeat t times: each time take the mean of k independent runs.

Take the median of these t values.

Return this median as our estimate.

This estimate will be much less likely to be bad.

Morris - The main result Ia

Repeat t iterations of k independent runs. Let Xi ,j be unbiased
estimators for the count whose true value we call Q. Let X be
distributed identically to Xi ,j . For δ, ε > 0, set

t = c

⌈
log2

1

δ

⌉
k =

3 var(X)

ε2(E(X))2

Let Z = mediani∈[t]

1

k

k∑
j=1

Xi ,j︸ ︷︷ ︸
mean

. Then we have that

Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.
If Morris uses s bits then our (ε, δ)-estimate uses

O

(
s · var(X)

(E(X))2
· 1

ε2
· log

1

δ

)
bits.

Morris - The main result Ia

Repeat t iterations of k independent runs. Let Xi ,j be unbiased
estimators for the count whose true value we call Q. Let X be
distributed identically to Xi ,j . For δ, ε > 0, set

t = c

⌈
log2

1

δ

⌉
k =

3 var(X)

ε2(E(X))2

Let Z = mediani∈[t]

1

k

k∑
j=1

Xi ,j︸ ︷︷ ︸
mean

.

Then we have that

Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.
If Morris uses s bits then our (ε, δ)-estimate uses

O

(
s · var(X)

(E(X))2
· 1

ε2
· log

1

δ

)
bits.

Morris - The main result Ia

Repeat t iterations of k independent runs. Let Xi ,j be unbiased
estimators for the count whose true value we call Q. Let X be
distributed identically to Xi ,j . For δ, ε > 0, set

t = c

⌈
log2

1

δ

⌉
k =

3 var(X)

ε2(E(X))2

Let Z = mediani∈[t]

1

k

k∑
j=1

Xi ,j︸ ︷︷ ︸
mean

. Then we have that

Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

If Morris uses s bits then our (ε, δ)-estimate uses

O

(
s · var(X)

(E(X))2
· 1

ε2
· log

1

δ

)
bits.

Morris - The main result Ia

Repeat t iterations of k independent runs. Let Xi ,j be unbiased
estimators for the count whose true value we call Q. Let X be
distributed identically to Xi ,j . For δ, ε > 0, set

t = c

⌈
log2

1

δ

⌉
k =

3 var(X)

ε2(E(X))2

Let Z = mediani∈[t]

1

k

k∑
j=1

Xi ,j︸ ︷︷ ︸
mean

. Then we have that

Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.
If Morris uses s bits then our (ε, δ)-estimate uses

O

(
s · var(X)

(E(X))2
· 1

ε2
· log

1

δ

)
bits.

Morris - The main result Ib

Lemma (Preliminary (ε, δ) result
Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

Proof.

For each i ∈ [t] we know E(1
k ·
∑k

j=1 Xi ,j) = Q by linearity of
expectation.

From pairwise independence, var(1
k ·
∑k

j=1 Xi ,j) = var(X)
k .

Let Yi = 1
k ·
∑k

j=1 Xi ,j ,

Pr(|Yi − Q| ≥ εQ) ≤ var(Yi)

(εQ)2
=

var(X)

kε2(E(X))2
=

1

3

Now apply the median trick from Lecture 4 (Tidemark) to get the
desired result.

Morris - The main result Ib

Lemma (Preliminary (ε, δ) result
Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

Proof.

For each i ∈ [t] we know E(1
k ·
∑k

j=1 Xi ,j) = Q by linearity of
expectation.

From pairwise independence, var(1
k ·
∑k

j=1 Xi ,j) = var(X)
k .

Let Yi = 1
k ·
∑k

j=1 Xi ,j ,

Pr(|Yi − Q| ≥ εQ) ≤ var(Yi)

(εQ)2
=

var(X)

kε2(E(X))2
=

1

3

Now apply the median trick from Lecture 4 (Tidemark) to get the
desired result.

Morris - The main result Ib

Lemma (Preliminary (ε, δ) result
Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

Proof.

For each i ∈ [t] we know E(1
k ·
∑k

j=1 Xi ,j) = Q by linearity of
expectation.

From pairwise independence, var(1
k ·
∑k

j=1 Xi ,j) = var(X)
k .

Let Yi = 1
k ·
∑k

j=1 Xi ,j ,

Pr(|Yi − Q| ≥ εQ) ≤ var(Yi)

(εQ)2
=

var(X)

kε2(E(X))2
=

1

3

Now apply the median trick from Lecture 4 (Tidemark) to get the
desired result.

Morris - The main result Ib

Lemma (Preliminary (ε, δ) result
Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

Proof.

For each i ∈ [t] we know E(1
k ·
∑k

j=1 Xi ,j) = Q by linearity of
expectation.

From pairwise independence, var(1
k ·
∑k

j=1 Xi ,j) = var(X)
k .

Let Yi = 1
k ·
∑k

j=1 Xi ,j ,

Pr(|Yi − Q| ≥ εQ) ≤ var(Yi)

(εQ)2
=

var(X)

kε2(E(X))2
=

1

3

Now apply the median trick from Lecture 4 (Tidemark) to get the
desired result.

Morris - The main result Ib

Lemma (Preliminary (ε, δ) result
Pr(|Z − Q| ≥ εQ) ≤ δ. That is Z is an (ε, δ)-estimate of Q.

Proof.

For each i ∈ [t] we know E(1
k ·
∑k

j=1 Xi ,j) = Q by linearity of
expectation.

From pairwise independence, var(1
k ·
∑k

j=1 Xi ,j) = var(X)
k .

Let Yi = 1
k ·
∑k

j=1 Xi ,j ,

Pr(|Yi − Q| ≥ εQ) ≤ var(Yi)

(εQ)2
=

var(X)

kε2(E(X))2
=

1

3

Now apply the median trick from Lecture 4 (Tidemark) to get the
desired result.

Morris - The main result II

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Proof.

We know that var(X)
(E(X))2

= n(n−1)
2n2

= 1
2 −

1
2n . Therefore the estimator

uses O(s · ε−2 log δ−1) bits of space.

Set a maximum s = 1 + log2 log2m by aborting if the variable x is
greater than 2 log2m.

This implies that Cm ≥ m2 ≥ n2. Therefore

Pr(Cn ≥ n2) ≤ E(Cn)

n2
=

n + 1

n2
=

1

n
+

1

n2

The probability that any one of the O(ε−2 log δ−1) runs aborts is
o(1). (Union bound)

Morris - The main result II

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Proof.

We know that var(X)
(E(X))2

= n(n−1)
2n2

= 1
2 −

1
2n . Therefore the estimator

uses O(s · ε−2 log δ−1) bits of space.

Set a maximum s = 1 + log2 log2m by aborting if the variable x is
greater than 2 log2m.

This implies that Cm ≥ m2 ≥ n2. Therefore

Pr(Cn ≥ n2) ≤ E(Cn)

n2
=

n + 1

n2
=

1

n
+

1

n2

The probability that any one of the O(ε−2 log δ−1) runs aborts is
o(1). (Union bound)

Morris - The main result II

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Proof.

We know that var(X)
(E(X))2

= n(n−1)
2n2

= 1
2 −

1
2n . Therefore the estimator

uses O(s · ε−2 log δ−1) bits of space.

Set a maximum s = 1 + log2 log2m by aborting if the variable x is
greater than 2 log2m.

This implies that Cm ≥ m2 ≥ n2. Therefore

Pr(Cn ≥ n2) ≤ E(Cn)

n2
=

n + 1

n2
=

1

n
+

1

n2

The probability that any one of the O(ε−2 log δ−1) runs aborts is
o(1). (Union bound)

Morris - The main result II

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Proof.

We know that var(X)
(E(X))2

= n(n−1)
2n2

= 1
2 −

1
2n . Therefore the estimator

uses O(s · ε−2 log δ−1) bits of space.

Set a maximum s = 1 + log2 log2m by aborting if the variable x is
greater than 2 log2m.

This implies that Cm ≥ m2 ≥ n2. Therefore

Pr(Cn ≥ n2) ≤ E(Cn)

n2
=

n + 1

n2
=

1

n
+

1

n2

The probability that any one of the O(ε−2 log δ−1) runs aborts is
o(1). (Union bound)

Morris - The main result II

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Proof.

We know that var(X)
(E(X))2

= n(n−1)
2n2

= 1
2 −

1
2n . Therefore the estimator

uses O(s · ε−2 log δ−1) bits of space.

Set a maximum s = 1 + log2 log2m by aborting if the variable x is
greater than 2 log2m.

This implies that Cm ≥ m2 ≥ n2. Therefore

Pr(Cn ≥ n2) ≤ E(Cn)

n2
=

n + 1

n2
=

1

n
+

1

n2

The probability that any one of the O(ε−2 log δ−1) runs aborts is
o(1). (Union bound)

Morris - The main result III

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Is this any good in practice? Think of ε = 1/2.

Exercise 4-1 shows how to improve the result to
O(log logm + log ε−1 + log δ−1) bits which is a significant
improvement.

In practice you use this if you don’t need a very accurate estimate
and/or with multiple massive streams.

The theory is however very attractive.

Morris - The main result III

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Is this any good in practice? Think of ε = 1/2.

Exercise 4-1 shows how to improve the result to
O(log logm + log ε−1 + log δ−1) bits which is a significant
improvement.

In practice you use this if you don’t need a very accurate estimate
and/or with multiple massive streams.

The theory is however very attractive.

Morris - The main result III

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Is this any good in practice? Think of ε = 1/2.

Exercise 4-1 shows how to improve the result to
O(log logm + log ε−1 + log δ−1) bits which is a significant
improvement.

In practice you use this if you don’t need a very accurate estimate
and/or with multiple massive streams.

The theory is however very attractive.

Morris - The main result III

Theorem - Approximate Counting

For a stream of length at most m, the problem of approximately
counting the number of tokens admits an (ε, δ)-estimation in
O(log logm · ε−2 log δ−1) bits of space.

Is this any good in practice? Think of ε = 1/2.

Exercise 4-1 shows how to improve the result to
O(log logm + log ε−1 + log δ−1) bits which is a significant
improvement.

In practice you use this if you don’t need a very accurate estimate
and/or with multiple massive streams.

The theory is however very attractive.

Morris - summary

I The Morris algorithms run in O(m) time but is an unbiased
estimator but the variance is high.

I We can improve it by taking the median of means to give
O(ε−2 log δ−1m) time and O(log logm · ε−2 log δ−1) bits of space.

I It is one-pass.

I The accuracy depends on the choice of ε and δ. The smaller they
are, the more accurate is the estimate but the longer the
algorithms takes to run and the more space it takes.

I Exercise 4-1 shows how to improve the space usage to
O(log logm + log ε−1 + log δ−1) bits.

Morris - summary

I The Morris algorithms run in O(m) time but is an unbiased
estimator but the variance is high.

I We can improve it by taking the median of means to give
O(ε−2 log δ−1m) time and O(log logm · ε−2 log δ−1) bits of space.

I It is one-pass.

I The accuracy depends on the choice of ε and δ. The smaller they
are, the more accurate is the estimate but the longer the
algorithms takes to run and the more space it takes.

I Exercise 4-1 shows how to improve the space usage to
O(log logm + log ε−1 + log δ−1) bits.

Morris - summary

I The Morris algorithms run in O(m) time but is an unbiased
estimator but the variance is high.

I We can improve it by taking the median of means to give
O(ε−2 log δ−1m) time and O(log logm · ε−2 log δ−1) bits of space.

I It is one-pass.

I The accuracy depends on the choice of ε and δ. The smaller they
are, the more accurate is the estimate but the longer the
algorithms takes to run and the more space it takes.

I Exercise 4-1 shows how to improve the space usage to
O(log logm + log ε−1 + log δ−1) bits.

Morris - summary

I The Morris algorithms run in O(m) time but is an unbiased
estimator but the variance is high.

I We can improve it by taking the median of means to give
O(ε−2 log δ−1m) time and O(log logm · ε−2 log δ−1) bits of space.

I It is one-pass.

I The accuracy depends on the choice of ε and δ. The smaller they
are, the more accurate is the estimate but the longer the
algorithms takes to run and the more space it takes.

I Exercise 4-1 shows how to improve the space usage to
O(log logm + log ε−1 + log δ−1) bits.

Morris - summary

I The Morris algorithms run in O(m) time but is an unbiased
estimator but the variance is high.

I We can improve it by taking the median of means to give
O(ε−2 log δ−1m) time and O(log logm · ε−2 log δ−1) bits of space.

I It is one-pass.

I The accuracy depends on the choice of ε and δ. The smaller they
are, the more accurate is the estimate but the longer the
algorithms takes to run and the more space it takes.

I Exercise 4-1 shows how to improve the space usage to
O(log logm + log ε−1 + log δ−1) bits.

