Topics in TCS

Majority and Misra-Gries

Raphaël Clifford

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

Then traverse in linear time to find if any occur \geq 7 times.

Given a sequence of integers a_1, \ldots, a_m , does there exist a integer that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

Then traverse in linear time to find if any occur \geq 7 times.

Linear space and $O(m \log m)$ time.

Finding the majority

Solved in 1981 by Boyer and Moore when considering votes. Run $\rm MAJORITY$ for each item in the input.

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
  if c == 0
         \alpha = i
         c = 1
  elif i = \alpha
         c = c + 1
  else
         c = c - 1
```


$$egin{array}{c} lpha = {\sf A} \ {\sf c} = {\sf 1} \end{array}$$

$$\alpha = A$$

c = 2

$$\alpha = A$$

c = 3

$$\alpha = A$$

c = 2

$$egin{array}{c} lpha = {\sf A} \ {\sf c} = 1 \end{array}$$

$$\alpha = A$$

c = 0

$$egin{array}{c} lpha = {\sf B} \ {\sf c} = {\sf 1} \end{array}$$

$$\alpha = \mathsf{B}$$

c = 0

$$egin{array}{c} lpha = \mathsf{C} \ \mathsf{c} = \mathsf{1} \end{array}$$

$$\alpha = C$$

c = 2

$$\alpha = C$$

c = 1

$$\alpha = C$$

c = 2

Consider the stream arriving from left to right.

$$\alpha = C$$

c = 3

C is the majority item

$$\alpha = A$$

c = 1

$$\alpha = A$$

c = 2

$$\alpha = A$$

c = 3

$$\alpha = A$$

c = 2

$$\alpha = A$$

c = 1

$$\alpha = A$$

c = 0

$$\alpha = C$$

c = 1

Time and space of the majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
  if c == 0
         \alpha = j
         c = 1
  elif j == \alpha
         c = c + 1
  else
         c = c - 1
```

Running time: At most 2*m* comparisons

O(m) overall.

Time and space of the majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
  if c == 0
         \alpha = j
         c = 1
  elif j == \alpha
         c = c + 1
  else
         c = c - 1
```

```
Running time: At most 2m comparisons
```

O(m) overall.

Space usage: One item and one integer

 $O(\log n + \log m)$ bits overall

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
  if c == 0
         \alpha = j
         c = 1
  elif j == \alpha
         c = c + 1
  else
         c = c - 1
```

If there is a majority item, it is reported.

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
  if c == 0
         \alpha = j
         c = 1
  elif j == \alpha
         c = c + 1
  else
         c = c - 1
```

If there is a majority item, it is reported.

```
Let \alpha^* be the final value of \alpha
```

```
MAJORITY(j)
```

```
initialise item \alpha

initialise counter c = 0

Repeat for each j

if c == 0

\alpha = j

c = 1

elif j == \alpha

c = c + 1

else

c = c - 1
```

If there is a majority item, it is reported.

Let α^* be the final value of α Run through input from left to right.

```
MAJORITY(j)
```

```
initialise item \alpha

initialise counter c = 0

Repeat for each j

if c == 0

\alpha = j

c = 1

elif j == \alpha

c = c + 1

else

c = c - 1
```

If there is a majority item, it is reported.

Let α^* be the final value of α

Run through input from left to right.

```
Let c' = c if \alpha = \alpha^* and -c otherwise.
```

```
MAJORITY(j)
```

```
initialise item \alpha

initialise counter c = 0

Repeat for each j

if c == 0

\alpha = j

c = 1

elif j == \alpha

c = c + 1

else

c = c - 1
```

If there is a majority item, it is reported.

Let α^* be the final value of α

Run through input from left to right.

```
Let c' = c if \alpha = \alpha^* and -c otherwise.
```

Every occurrence of α^* increases c^\prime by one.

```
initialise item \alpha
initialise counter c = 0
Repeat for each j
if c == 0
\alpha = j
c = 1
elif j == \alpha
c = c + 1
else
c = c - 1
```

MAJORITY(j)

If there is a majority item, it is reported.

Let α^* be the final value of α

Run through input from left to right.

```
Let c' = c if \alpha = \alpha^* and -c otherwise.
```

Every occurrence of α^* increases c^\prime by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

```
initialise item \alpha
initialise counter c = 0
Repeat for each j
if c == 0
\alpha = j
c = 1
elif j == \alpha
c = c + 1
else
c = c - 1
```

MAJORITY(j)

If there is a majority item, it is reported.

Let α^* be the final value of α

Run through input from left to right.

```
Let c' = c if \alpha = \alpha^* and -c otherwise.
```

Every occurrence of α^* increases c^\prime by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If α^* is in the majority, there are more increases than decreases and so c' = c which implies $\alpha = \alpha^*$.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = A$ c = 1 Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = A$ c = 2

c' = -2

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = A$ c = 3

c' = -3

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = A$ c = 2

c' = -2

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAAC <u>C</u>BBCCCBCC

 $\alpha = A$ c = 1 Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise. Every occurence of α^* increases c' by one. Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACC BBCCCBCC

 $\alpha = A$ c = 0c' = 0

Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = B$ c = 1 Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise. Every occurence of α^* increases c' by one. Every occurence that is not α^* either increases or decreases c' by 1. If α^* is in the majority more increases

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = B$ c = 0

c'=0

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBC CCBCC

 $\alpha = C$ c = 1c' = 1

Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise. Every occurence of α^* increases c' by one. Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCC CBCC

 $\alpha = C$ c = 2

c'=2

Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise. Every occurence of α^* increases c' by one. Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBCC

 $\alpha = C$ c = 1c' = 1

Run through input from left to right. Let c' = c if $\alpha = \alpha^*$ and -c otherwise. Every occurence of α^* increases c' by one.

Every occurrence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCB<u>C</u>C

 $\alpha = C$ c = 2

c' = 2

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurence that is not α^* either increases or decreases c' by 1.

If there is a majority item, it is reported.

A, A, A, C, C, B, B, C, C, C, B, C, C At termination c = 3, $\alpha^* = C$

AAACCBBCCCBC<u>C</u>

 $\alpha = C$ c = 3

c'=3

Run through input from left to right.

Let c' = c if $\alpha = \alpha^*$ and -c otherwise.

Every occurrence of α^* increases c' by one.

Every occurence that is not α^* either increases or decreases c' by 1.

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$MISRA-GRIES(a_1, a_{2, j}, \tilde{a_m})^{-1} \tilde{f_i}$	a_i is the estimate for the frequency of token a_i
set $A = \emptyset$	
For each i	
if $a_i \in A$	
$\widetilde{f_{a_i}} = \widetilde{f}_{a_i} + 1$	
else	
if $ A < k-1$	
add $(a_i,1)$ to A	
else	
for $(a_i, ilde{f}_{a_i}) \in A$	
$\widetilde{f}_{a_i} = \widetilde{f}_{a_i} - 1$	
if $\widetilde{f}_{a_i}=0$	
$remove(a_i, ilde{f}_{a_i})$ from A	

Given k, which elements (if any) appear more than m/k times?

 \tilde{f}_{a_i} is the estimate for the frequency of token a_i MISRA-GRIES $(a_1, a_2, \ldots, \tilde{a_m})$ • Returns at most k-1 pairs (v, f_v) set $A = \emptyset$ For each if $a_i \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} + 1$ else if |A| < k - 1add $(a_i, 1)$ to A else for $(a_i, \tilde{f}_{a_i}) \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} - 1$ if $\tilde{f}_{a_i} = 0$ $remove(a_i, \tilde{f}_{a_i})$ from A

Given k, which elements (if any) appear more than m/k times?

 \tilde{f}_{a_i} is the estimate for the frequency of token a_i MISRA-GRIES $(a_1, a_2, \ldots, \tilde{a_m})$ • Returns at most k-1 pairs (v, f_v) set $A = \emptyset$ • For every $(v, \tilde{f}_v) \in A$ where the For each i true frequency is f_{ν} . if $a_i \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} + 1$ $f_{v} - \frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}$ else if |A| < k - 1add $(a_i, 1)$ to A else for $(a_i, \tilde{f}_{a_i}) \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} - 1$ if $\tilde{f}_{a_i} = 0$ $remove(a_i, \tilde{f}_{a_i})$ from A

Given k, which elements (if any) appear more than m/k times?

 \tilde{f}_{a_i} is the estimate for the frequency of token a_i MISRA-GRIES $(a_1, a_2, \ldots, \tilde{a_m})$ • Returns at most k-1 pairs (v, f_v) set $A = \emptyset$ • For every $(v, \tilde{f}_v) \in A$ where the For each i true frequency is f_{ν} . if $a_i \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} + 1$ $f_{v} - \frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}$ else if |A| < k - 1 Every 1/k-heavy hitter is found. add $(a_i, 1)$ to A else for $(a_i, \tilde{f}_{a_i}) \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} - 1$ if $\tilde{f}_{a_i} = 0$ $remove(a_i, \tilde{f}_{a_i})$ from A

Given k, which elements (if any) appear more than m/k times?

MISRA-GRIES $(a_1, a_2, \ldots, \tilde{a_m})$ set $A = \emptyset$ For each i if $a_i \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} + 1$ else if |A| < k - 1add $(a_i, 1)$ to A else for $(a_i, \tilde{f}_{a_i}) \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} - 1$ if $\tilde{f}_{a_i} = 0$ $remove(a_i, \tilde{f}_{a_i})$ from A

 \tilde{f}_{a_i} is the estimate for the frequency of token a_i

- Returns at most k-1 pairs (v, \tilde{f}_v)
- For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v ,

$$f_{v} - \frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}$$

- Every 1/k-heavy hitter is found.
- Some non-heaver hitters might be reported.

Given k, which elements (if any) appear more than m/k times?

MISRA-GRIES $(a_1, a_2, \ldots, \tilde{a_m})$ set $A = \emptyset$ For each i if $a_i \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} + 1$ else if |A| < k - 1add $(a_i, 1)$ to A else for $(a_i, \tilde{f}_{a_i}) \in A$ $\tilde{f}_{a_i} = \tilde{f}_{a_i} - 1$ if $\tilde{f}_{a_i} = 0$ $remove(a_i, \tilde{f}_{a_i})$ from A

 \tilde{f}_{a_i} is the estimate for the frequency of token a_i

- Returns at most k-1 pairs (v, \tilde{f}_v)
- For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v ,

$$f_{v} - \frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}$$

- Every 1/k-heavy hitter is found.
- Some non-heaver hitters might be reported.
- Second pass may be needed

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A \neq
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$-A \rightarrow \tilde{f}_A = 1$$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k-1
      add (a_i, 1) to A \checkmark
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$A
ightarrow ilde{f}_A = 1$$

-- $C
ightarrow ilde{f}_A = 1, ilde{f}_C = 1$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$A
ightarrow ilde{f}_A = 1$$

 $C
ightarrow ilde{f}_A = 1, ilde{f}_C = 1$
 $A
ightarrow ilde{f}_A = 2, ilde{f}_C = 1$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A \neq
```

$$A
ightarrow ilde{f}_A = 1$$

 $C
ightarrow ilde{f}_A = 1, ilde{f}_C = 1$
 $A
ightarrow ilde{f}_A = 2, ilde{f}_C = 1$
 $f_C
ightarrow ilde{f}_A = 1$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1 \leftrightarrow \cdots \to \infty
  else
    if |A| < k - 1
       add (a_i, 1) to A
     else
       for (a_i, \tilde{f}_{a_i}) \in A
         \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
            remove(a_i, \tilde{f}_{a_i}) from A
```

$$A
ightarrow ilde{f}_A = 1$$

 $C
ightarrow ilde{f}_A = 1, ilde{f}_C = 1$
 $A
ightarrow ilde{f}_A = 2, ilde{f}_C = 1$
 $B
ightarrow ilde{f}_A = 1$
 $A
ightarrow ilde{f}_A = 2$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A \leftarrow \cdots
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$A \rightarrow \tilde{f}_A = 1$$

$$C \rightarrow \tilde{f}_A = 1, \tilde{f}_C = 1$$

$$A \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1$$

$$B \rightarrow \tilde{f}_A = 1$$

$$A \rightarrow \tilde{f}_A = 2$$

$$C \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1$$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
   \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1 
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$A \rightarrow \tilde{f}_A = 1$$

$$C \rightarrow \tilde{f}_A = 1, \tilde{f}_C = 1$$

$$A \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1$$

$$B \rightarrow \tilde{f}_A = 1$$

$$A \rightarrow \tilde{f}_A = 2$$

$$C \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1$$

$$B \rightarrow \tilde{f}_A = 1$$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A \leftarrow 
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

$$\begin{array}{l} A \rightarrow \tilde{f}_A = 1 \\ C \rightarrow \tilde{f}_A = 1, \tilde{f}_C = 1 \\ A \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1 \\ B \rightarrow \tilde{f}_A = 1 \\ A \rightarrow \tilde{f}_A = 2 \\ C \rightarrow \tilde{f}_A = 2, \tilde{f}_C = 1 \\ B \rightarrow \tilde{f}_A = 1, \tilde{f}_B = 1 \end{array}$$

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

• Space: k-1 pairs stored in total

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
       add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
         \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
       add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
         \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
       add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
         \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.
- Running time depends on data structure used.

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree $O(\log n)$ time per operation.

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree
 O(log n) time per operation.
- We can only decrement (or remove) if we previously incremented. Therefore O(m) operations.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

```
MISRA-GRIES (a_1, a_2, \ldots, a_m)
set A = \emptyset
For each i
  if a_i \in A
    \tilde{f}_{a_i} = \tilde{f}_{a_i} + 1
  else
    if |A| < k - 1
      add (a_i, 1) to A
    else
      for (a_i, \tilde{f}_{a_i}) \in A
        \tilde{f}_{a_i} = \tilde{f}_{a_i} - 1
         if \tilde{f}_{a_i} = 0
           remove(a_i, \tilde{f}_{a_i}) from A
```

- Space: k-1 pairs stored in total
- $O(k(\log m + \log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree
 O(log n) time per operation.
- We can only decrement (or remove) if we previously incremented. Therefore O(m) operations.
 - $O(m(\log n))$ time overall.

Let's look at a less efficient version for the analysis.

```
MODIFIED-MG(a_1, a_2, \ldots, a_m)
set A = empty multiset
For each i
 if a_i \in A
  add a copy of a_i to A
 else
  if |supp(A)| < k-1
    add a_i to A
  else
    add and then delete a_i
    delete one copy of each
                   item in A
```

Let's look at a less efficient version for the analysis.

```
MODIFIED-MG(a_1, a_2, \ldots, a_m)
set A = empty multiset
For each i
 if a_i \in A
  add a copy of a_i to A
 else
  if |supp(A)| < k-1
    add a_i to A
  else
    add and then delete a_i
    delete one copy of each
                   item in A
```

 |supp(A)| is the number of distinct tokens in A.

Let's look at a less efficient version for the analysis.

```
MODIFIED-MG(a_1, a_2, \ldots, a_m)
set A = empty multiset
For each i
 if a_i \in A
  add a copy of a_i to A
 else
  if |\operatorname{supp}(A)| < k-1
    add a_i to A
  else
    add and then delete a_i
    delete one copy of each
                    item in A
```

 |supp(A)| is the number of distinct tokens in A.

• Identical except for space usage.

Let's look at a less efficient version for the analysis.

```
MODIFIED-MG(a_1, a_2, \ldots, a_m)
set A = empty multiset
For each i
 if a_i \in A
  add a copy of a_i to A
 else
  if |\operatorname{supp}(A)| < k-1
    add a_i to A
  else
    add and then delete a_i
    delete one copy of each
                    item in A
```

 |supp(A)| is the number of distinct tokens in A.

• Identical except for space usage.

Let's look at a less efficient version for the analysis.

```
MODIFIED-MG(a_1, a_2, \ldots, a_m)
set A = empty multiset
For each i
 if a_i \in A
  add a copy of a_i to A
 else
  if |\operatorname{supp}(A)| < k-1
    add a_i to A
  else
    add and then delete a_i
    delete one copy of each
                    item in A
```

 |supp(A)| is the number of distinct tokens in A.

• Identical except for space usage.

• Items are deleted in groups of k.

• Each item can be deleted $\leq \frac{m}{k}$ times.

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $m \sim \tilde{f}_v$

$$f_{\nu}-\frac{m}{k}\leq \tilde{f}_{\nu}\leq f_{\nu}$$

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

Items are deleted in groups of k.

• Each item can therefore be deleted $\leq \frac{m}{k}$ times.

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let a(v) be the number of times v was seen without incrementing f
 _v. Let b(v) be the number of times f
 _v was decremented.

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let a(v) be the number of times v was seen without incrementing \tilde{f}_{v} . Let b(v) be the number of times \tilde{f}_{v} was decremented.

• We now have that
$$\tilde{f}_v = f_v - a(v) - b(v) = f_v - (a(v) + b(v))$$
.

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let a(v) be the number of times v was seen without incrementing \tilde{f}_{v} . Let b(v) be the number of times \tilde{f}_{v} was decremented.
- We now have that $\tilde{f}_v = f_v a(v) b(v) = f_v (a(v) + b(v))$.
- ▶ The number of decrements equals a(v) + b(v), therefore $a(v) + b(v) \le \frac{m}{k}$.

STATEMENT FOR MISRA-GRIES For every $(v, \tilde{f}_v) \in A$ where the true frequency is f_v , $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let a(v) be the number of times v was seen without incrementing \tilde{f}_{v} . Let b(v) be the number of times \tilde{f}_{v} was decremented.
- We now have that $\tilde{f}_v = f_v a(v) b(v) = f_v (a(v) + b(v))$.
- ► The number of decrements equals a(v) + b(v), therefore $a(v) + b(v) \le \frac{m}{k}$.

• Hence
$$f_v - \frac{m}{k} \leq \tilde{f}_v$$

${\rm MISRA}\text{-}{\rm GRIES}$

${\rm MISRA\text{-}GRIES}$

The Misra-Gries algorithm uses $O(\frac{1}{\epsilon}(\log m + \log n))$ bits of space to find a set of size at most $\lceil \frac{1}{\epsilon} \rceil$ that contains every item of frequency at least ϵm .

1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.

${\rm MISRA\text{-}GRIES}$

- 1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.
- 2. If there is an item that occurs more than m/2 times the MAJORITY algorithm will output it.

${\rm MISRA\text{-}GRIES}$

- 1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.
- 2. If there is an item that occurs more than m/2 times the MAJORITY algorithm will output it.
- 3. With a second pass we can check if there is a majority in the stream

${\rm MISRA}\text{-}{\rm GRIES}$

- 1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.
- 2. If there is an item that occurs more than m/2 times the MAJORITY algorithm will output it.
- 3. With a second pass we can check if there is a majority in the stream
- MISRA-GRIES uses O(k(log m + log n)) space and runs in O(m log m) time.

${\rm MISRA}\text{-}{\rm GRIES}$

- 1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.
- 2. If there is an item that occurs more than m/2 times the MAJORITY algorithm will output it.
- 3. With a second pass we can check if there is a majority in the stream
- MISRA-GRIES uses O(k(log m + log n)) space and runs in O(m log m) time.
- 5. It will output all tokens that occur more than m/k times but may output others as well.

${\rm MISRA}\text{-}{\rm GRIES}$

- 1. MAJORITY uses $O(\log m + \log n)$ space and runs in linear time.
- 2. If there is an item that occurs more than m/2 times the MAJORITY algorithm will output it.
- 3. With a second pass we can check if there is a majority in the stream
- MISRA-GRIES uses O(k(log m + log n)) space and runs in O(m log m) time.
- 5. It will output all tokens that occur more than m/k times but may output others as well.
- 6. With a second pass we can remove all the undesired tokens.