Topics in TCS

Majority and Misra-Gries

Raphaël Clifford

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution
Votes: $A A A C C B B C C C B C C$. There were 13 votes in total.

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution
Votes: $A A A C C B B C C C B C C$. There were 13 votes in total.

We could sort the input giving $A A A B B B C C C C C C$.

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution
Votes: $A A A C C B B C C C B C C$. There were 13 votes in total.

We could sort the input giving $A A A B B B C C C C C C$.

Then traverse in linear time to find if any occur ≥ 7 times.

The majority problem

Given a sequence of integers a_{1}, \ldots, a_{m}, does there exist a integer that occurs more than $m / 2$ times?

Originally considered for elections. Three candidates A, B and C. Did any of them get a majority?

Naive majority solution
Votes: $A A A C C B B C C C B C C$. There were 13 votes in total.

We could sort the input giving $A A A B B B C C C C C C$.

Then traverse in linear time to find if any occur ≥ 7 times.

Linear space and $O(m \log m)$ time.

Finding the majority

Solved in 1981 by Boyer and Moore when considering votes. Run Majority for each item in the input.

Majority (j)
initialise item α
initialise counter $c=0$
Repeat for each j

$$
\text { if } c==0
$$

$$
\alpha=j
$$

$$
c=1
$$

$$
\operatorname{elif} j==\alpha
$$

$$
c=c+1
$$

else

$$
c=c-1
$$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c=1
        elif j == \alpha
            c=c+1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC

$$
\begin{aligned}
& \alpha=\mathrm{A} \\
& \mathrm{c}=1
\end{aligned}
$$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC

$$
\begin{aligned}
& \alpha=\mathrm{A} \\
& \mathrm{c}=2
\end{aligned}
$$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c=1
        elif j == \alpha
            c=c+1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC

$$
\begin{aligned}
& \alpha=\mathrm{A} \\
& \mathrm{c}=3
\end{aligned}
$$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
$\alpha=\mathrm{A}$
$\mathrm{c}=2$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

AAAC $\subseteq B B C C C B C C$
$\alpha=\mathrm{A}$
$c=1$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
$\alpha=\mathrm{A}$
$\mathrm{c}=0$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
$\alpha=\mathrm{B}$
$\mathrm{c}=1$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.
$A A A C C B B C C C B C C$
$\alpha=\mathrm{B}$
$\mathrm{c}=0$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c=c+1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
$\alpha=\mathrm{C}$
$c=1$

Majority algorithm

initialise item \alpha
initialise item \alpha
Repeat for each j
if c == 0
\alpha=j
c = 1
elif j == \alpha
c=c+1
else
c=c-1

```
```

```
MAJORITY(j)
```

```
```

MAJORITY(j)

```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
\(\alpha=\mathrm{C}\)
\(c=2\)

\section*{Majority algorithm}
```

MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
if c == 0
\alpha=j
c = 1
elif j == \alpha
c=c+1
else

$$
c=c-1
$$

```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
\(\alpha=\mathrm{C}\)
\(c=1\)

\section*{Majority algorithm}
initialise item \alpha 
initialise item \alpha 
Repeat for each j
    if c == 0
\[
\alpha=j
\]
        \alpha=j
\[
c=1
\]
        c = 1
\[
\text { elif } j==\alpha
\]
        elif j == \alpha
```

```
```

MAJORITY(j)

```
```

```
MAJORITY(j)
```

```
\[
c=c+1
\]
            c=c+1
else
        else
            c=c-1
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC
$\alpha=\mathrm{C}$
$c=2$

Majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
        \alpha=j
        c = 1
        elif j == \alpha
            c = c + 1
        else
            c=c-1
```

Consider the stream arriving from left to right.

AAACCBBCCCBCC

$\alpha=\mathrm{C}$
$c=3$
C is the majority item

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.
$\underline{A} A A B B B C$
$\alpha=\mathrm{A}$
$c=1$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.
$A \underline{A} A B B B C$
$\alpha=\mathrm{A}$
$c=2$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c = 1
        elif j == \alpha
            c=c+1
        else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.
$A A \underline{A} B B B C$
$\alpha=\mathrm{A}$
$c=3$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c = 1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.
$A A A B B B C$
$\alpha=\mathrm{A}$
$\mathrm{c}=2$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

$$
A A A B B B C
$$

$$
\alpha=\mathrm{A}
$$

$$
c=1
$$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

$$
A A A B B B C
$$

$$
\alpha=\mathrm{A}
$$

$$
c=0
$$

Majority algorithm - wrong answer

```
MAJORITY(j)
initialise item \alpha
initialise counter c = 0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Consider the stream arriving from left to right.

$$
A A A B B B \subseteq
$$

$$
\alpha=\mathrm{C}
$$

$$
c=1
$$

Time and space of the majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
        c=c-1
```

 Running time: At most \(2 m\)
 comparisons
$O(m)$ overall.

Time and space of the majority algorithm

```
MAJORITY(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
    \alpha=j
    c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

Running time: At most $2 m$ comparisons

$$
O(m) \text { overall. }
$$

Space usage: One item and one integer
$O(\log n+\log m)$ bits overall

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
            c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
            c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
            c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α
Run through input from left to right.

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α
Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α
Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.

Every occurrence of α^{*} increases c^{\prime} by one.

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
    c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α
Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.

Every occurrence of α^{*} increases c^{\prime} by one.

Every occurrence that is not α^{*} either increases or decreases c^{\prime} by 1 .

Correctness of the majority algorithm

```
Majority(j)
initialise item \alpha
initialise counter c=0
Repeat for each j
    if c == 0
            \alpha=j
            c=1
    elif j == \alpha
            c=c+1
    else
\[
c=c-1
\]
```

If there is a majority item, it is reported.

Let α^{*} be the final value of α Run through input from left to right.

Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.

Every occurrence of α^{*} increases c^{\prime} by one.

Every occurrence that is not α^{*} either increases or decreases c^{\prime} by 1 .
If α^{*} is in the majority, there are more increases than decreases and so $c^{\prime}=c$ which implies $\alpha=\alpha^{*}$.

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =A \\
c & =1 \\
c^{\prime} & =-1
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =A \\
c & =2 \\
c^{\prime} & =-2
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =A \\
c & =3 \\
c^{\prime} & =-3
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =A \\
c & =2 \\
c^{\prime} & =-2
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =A \\
c & =1 \\
c^{\prime} & =-1
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

AAACCBBCCCBCC

$\alpha=A$
$c=0$
$c^{\prime}=0$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1.

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =B \\
c & =1 \\
c^{\prime} & =-1
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =B \\
c & =0 \\
c^{\prime} & =0
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } C=3, \alpha^{*}=C
\end{aligned}
$$

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =C \\
c & =1 \\
c^{\prime} & =1
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1.

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =C \\
c & =2 \\
c^{\prime} & =2
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =C \\
c & =1 \\
c^{\prime} & =1
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } C=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1.

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCC

$$
\begin{aligned}
\alpha & =C \\
c & =2 \\
c^{\prime} & =2
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } c=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1.

If α^{*} is in the majority, more increases than decreases!

Correctness of the majority algorithm

AAACCBBCCCBCㄷ

$$
\begin{aligned}
\alpha & =C \\
c & =3 \\
c^{\prime} & =3
\end{aligned}
$$

If there is a majority item, it is reported.

$$
\begin{aligned}
& A, A, A, C, C, B, B, C, C, C, B, C, C \\
& \text { At termination } C=3, \alpha^{*}=C
\end{aligned}
$$

Run through input from left to right.
Let $c^{\prime}=c$ if $\alpha=\alpha^{*}$ and $-c$ otherwise.
Every occurence of α^{*} increases c^{\prime} by one.
Every occurence that is not α^{*} either increases or decreases c^{\prime} by 1 .

If α^{*} is in the majority, more increases than decreases!

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

```
\(\operatorname{MISRA}-\operatorname{GRIES}\left(a_{1}, a_{2}, \ldots,-\bar{a}_{m}^{-}\right)^{--\tilde{f}_{a_{i}} \text { is the estimate for the frequency of token } a_{i}}\)
                            - Returns at most \(k-1\) pairs \(\left(v, \tilde{f}_{v}\right)\)
set \(A=\emptyset\)
For each \({ }^{\prime}\) '
    if \(a_{i}^{\prime} \in A\)
        \(\tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1\)
    else
        if \(|A|<k-1\)
        add \(\left(a_{i}, 1\right)\) to \(A\)
        else
        for \(\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A\)
        \(\tilde{f}_{a i}=\tilde{f}_{a i}-1\)
        if \(\tilde{f}_{a_{i}}=0\)
        remove \(\left(a_{i}, \tilde{f}_{a_{i}}\right)\) from \(A\)
```

$\tilde{f}_{a_{i}}$ is the estimate for the frequency of token a_{i}

- Returns at most $k-1$ pairs $\left(v, \tilde{f}_{v}\right)$
- For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m / k times?

- For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Every $1 / k$-heavy hitter is found.
- Some non-heaver hitters might be reported.
- Second pass may be needed

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MISRA-GRIES }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

$$
\text { Stream: } A C A B A C B B
$$

$$
m=8, k=3
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-GRIES }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \quad \text { add }\left(a_{i}, 1\right) \text { to } A \downarrow \\
& \text { else } \\
& \quad \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \operatorname{MisRA}-\operatorname{Gries}\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { Stream: } A C A B A C B B \\
& m=8, k=3 \text {. } \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A k \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a i}=\tilde{f}_{a i}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { Misra-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \quad \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \quad \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

$$
\text { Stream: } A C A B A C B B
$$

$$
m=8, k=3
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \operatorname{MisRA}-G r i e s\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \begin{array}{l}
\text { if } a_{i} \in A \\
\tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1
\end{array} \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A^{\prime} \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a i}-1{ }^{\prime} \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A \downarrow^{\prime} \\
& \text { Stream: } A C A B A C B B \\
& m=8, k=3 \text {. } \\
& A \rightarrow \tilde{f}_{A}=1 \\
& C \rightarrow \tilde{f}_{A}=1, \tilde{f}_{C}=1 \\
& A \rightarrow \tilde{f}_{A}=2, \tilde{f}_{C}=1 \\
& -B
\end{aligned}
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-GriEs }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \quad \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0
\end{aligned}
$$

$$
\text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MISRA-GriEs }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \quad \text { add }\left(a_{i}, 1\right) \text { to } A \not \cdots \\
& \text { else } \\
& \quad \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \operatorname{MisRA}-G r i e s\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 k^{-} \\
& \text {if } \tilde{f}_{a_{i}}=0 \\
& m=8, k=3 \text {. } \\
& A \rightarrow \tilde{f}_{A}=1 \\
& C \rightarrow \tilde{f}_{A}=1, \tilde{f}_{C}=1 \\
& A \rightarrow \tilde{f}_{A}=2, \tilde{f}_{C}=1 \\
& B \rightarrow \tilde{f}_{A}=1 \\
& A \rightarrow \tilde{f}_{A}=2 \\
& C \rightarrow \tilde{f}_{A}=2, \tilde{f}_{C}=1 \\
& B \rightarrow \tilde{f}_{A}=1
\end{aligned}
$$

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-GriEs }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \quad \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0
\end{aligned}
$$

$$
\text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
$$

Stream: $A C A B A C B B$ $m=8, k=3$.

$$
\begin{aligned}
& A \rightarrow \tilde{f}_{A}=1 \\
& C \rightarrow \tilde{f}_{A}=1, \tilde{f}_{C}=1 \\
& A \rightarrow \tilde{f}_{A}=2, \tilde{f}_{C}=1 \\
& B \rightarrow \tilde{f}_{A}=1 \\
& A \rightarrow \tilde{f}_{A}=2 \\
& C \rightarrow \tilde{f}_{A}=2, \tilde{f}_{C}=1 \\
& B \rightarrow \tilde{f}_{A}=1 \\
& B \rightarrow \tilde{f}_{A}=1, \tilde{f}_{B}=1
\end{aligned}
$$

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MISRA-GRIES }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

- Space: $k-1$ pairs stored in total

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.
- Running time depends on data structure used.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?

$$
\begin{aligned}
& \text { MisRA-Gries }\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& \text { set } A=\emptyset \\
& \text { For each } i \\
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1 \\
& \text { else } \\
& \text { if }|A|<k-1 \\
& \text { add }\left(a_{i}, 1\right) \text { to } A \\
& \text { else } \\
& \text { for }\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}-1 \\
& \text { if } \tilde{f}_{a_{i}}=0 \\
& \quad \text { remove }\left(a_{i}, \tilde{f}_{a_{i}}\right) \text { from } A
\end{aligned}
$$

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree $O(\log n)$ time per operation.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?
$\operatorname{MisRA}-\operatorname{Gries}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=\emptyset$
For each i

$$
\begin{aligned}
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1
\end{aligned}
$$

else
if $|A|<k-1$
add $\left(a_{i}, 1\right)$ to A
else
for $\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A$
$\tilde{f}_{a i}=\tilde{f}_{a i}-1$
if $\tilde{f}_{a_{i}}=0$
remove $\left(a_{i}, \tilde{f}_{a_{i}}\right)$ from A

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree $O(\log n)$ time per operation.
- We can only decrement (or remove) if we previously incremented. Therefore $O(m)$ operations.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m / k times?
$\operatorname{MisRA}-\operatorname{Gries}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=\emptyset$
For each i

$$
\begin{aligned}
& \text { if } a_{i} \in A \\
& \tilde{f}_{a_{i}}=\tilde{f}_{a_{i}}+1
\end{aligned}
$$

else
if $|A|<k-1$
add $\left(a_{i}, 1\right)$ to A
else
for $\left(a_{i}, \tilde{f}_{a_{i}}\right) \in A$
$\tilde{f}_{a i}=\tilde{f}_{a i}-1$
if $\tilde{f}_{a_{i}}=0$
remove $\left(a_{i}, \tilde{f}_{a_{i}}\right)$ from A

- Space: $k-1$ pairs stored in total
- $O(k(\log m+\log n))$ bits space.
- Running time depends on data structure used.
- Balanced binary search tree $O(\log n)$ time per operation.
- We can only decrement (or remove) if we previously incremented. Therefore $O(m)$ operations.
- $O(m(\log n))$ time overall.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.
$\operatorname{Modified}-M G\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=$ empty multiset
For each i
if $a_{i} \in A$
add a copy of a_{i} to A
else
if $|\operatorname{supp}(A)|<k-1$
add a_{i} to A
else
add and then delete a_{i}
delete one copy of each
item in A

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.
$\operatorname{Modified}-M G\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=$ empty multiset For each i
if $a_{i} \in A$
add a copy of a_{i} to A
else
if $|\operatorname{supp}(A)|<k-1$
add a_{i} to A
else
add and then delete a_{i} delete one copy of each item in A

- $|\operatorname{supp}(A)|$ is the number of distinct tokens in A.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.
$\operatorname{Modified}-M G\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=$ empty multiset
For each i
if $a_{i} \in A$
add a copy of a_{i} to A
else
if $|\operatorname{supp}(A)|<k-1$
add a_{i} to A
else
add and then delete a_{i} delete one copy of each item in A

- $|\operatorname{supp}(A)|$ is the number of distinct tokens in A.
- Identical except for space usage.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.
$\operatorname{Modified}-M G\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=$ empty multiset
For each i
if $a_{i} \in A$
add a copy of a_{i} to A
else
if $|\operatorname{supp}(A)|<k-1$
add a_{i} to A
else
add and then delete a_{i} delete one copy of each item in A

- $|\operatorname{supp}(A)|$ is the number of distinct tokens in A.
- Identical except for space usage.
- Items are deleted in groups of k.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.
$\operatorname{Modified}-M G\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
set $A=$ empty multiset
For each i
if $a_{i} \in A$
add a copy of a_{i} to A
else
if $|\operatorname{supp}(A)|<k-1$
add a_{i} to A
else
add and then delete a_{i} delete one copy of each item in A

- $|\operatorname{supp}(A)|$ is the number of distinct tokens in A.
- Identical except for space usage.
- Items are deleted in groups of k.
- Each item can be deleted $\leq \frac{m}{k}$ times.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let $a(v)$ be the number of times v was seen without incrementing \tilde{f}_{v}. Let $b(v)$ be the number of times \tilde{f}_{v} was decremented.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let $a(v)$ be the number of times v was seen without incrementing \tilde{f}_{v}. Let $b(v)$ be the number of times \tilde{f}_{v} was decremented.
- We now have that $\tilde{f}_{v}=f_{v}-a(v)-b(v)=f_{v}-(a(v)+b(v))$.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let $a(v)$ be the number of times v was seen without incrementing \tilde{f}_{v}. Let $b(v)$ be the number of times \tilde{f}_{v} was decremented.
- We now have that $\tilde{f}_{v}=f_{v}-a(v)-b(v)=f_{v}-(a(v)+b(v))$.
- The number of decrements equals $a(v)+b(v)$, therefore $a(v)+b(v) \leq \frac{m}{k}$.

Misra-Gries - Analysis

Statement for Misra-Gries
For every $\left(v, \tilde{f}_{v}\right) \in A$ where the true frequency is f_{v},

$$
f_{v}-\frac{m}{k} \leq \tilde{f}_{v} \leq f_{v}
$$

- Items are deleted in groups of k.
- Each item can therefore be deleted $\leq \frac{m}{k}$ times.
- Let $a(v)$ be the number of times v was seen without incrementing \tilde{f}_{v}. Let $b(v)$ be the number of times \tilde{f}_{v} was decremented.
- We now have that $\tilde{f}_{v}=f_{v}-a(v)-b(v)=f_{v}-(a(v)+b(v))$.
- The number of decrements equals $a(v)+b(v)$, therefore $a(v)+b(v) \leq \frac{m}{k}$.
- Hence $f_{v}-\frac{m}{k} \leq \tilde{f}_{v}$.

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.
2. If there is an item that occurs more than $m / 2$ times the MAJORITY algorithm will output it.

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.
2. If there is an item that occurs more than $m / 2$ times the Majority algorithm will output it.
3. With a second pass we can check if there is a majority in the stream

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.
2. If there is an item that occurs more than $m / 2$ times the MAJORITY algorithm will output it.
3. With a second pass we can check if there is a majority in the stream
4. Misra-Gries uses $O(k(\log m+\log n))$ space and runs in $O(m \log m)$ time.

Summary

MisRA-GRIES

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.
2. If there is an item that occurs more than $m / 2$ times the MAJORITY algorithm will output it.
3. With a second pass we can check if there is a majority in the stream
4. Misra-Gries uses $O(k(\log m+\log n))$ space and runs in $O(m \log m)$ time.
5. It will output all tokens that occur more than m / k times but may output others as well.

Summary

Misra-Gries

The Misra-Gries algorithm uses $O\left(\frac{1}{\epsilon}(\log m+\log n)\right)$ bits of space to find a set of size at most $\left\lceil\frac{1}{\epsilon}\right\rceil$ that contains every item of frequency at least ϵm.

1. Majority uses $O(\log m+\log n)$ space and runs in linear time.
2. If there is an item that occurs more than $m / 2$ times the MAJORITY algorithm will output it.
3. With a second pass we can check if there is a majority in the stream
4. Misra-Gries uses $O(k(\log m+\log n))$ space and runs in $O(m \log m)$ time.
5. It will output all tokens that occur more than m / k times but may output others as well.
6. With a second pass we can remove all the undesired tokens.
