
Exercise Sheet

COMSM0068 Advanced Topics in Theoretical Computer Science

2020/2021

1 Minimum Spanning Tree (MST)

We consider a weighted graph G = (V,E,w), where w : E → N is an edge weight function. A
minimum spanning tree F ⊆ E in G is a spanning tree in G of minimum weight, i.e., the sum
of its edge weights is as small as possible.

We consider the streaming edge-arrival model where the edges arrive together with their
weights. More specifically, the input stream consists of a sequence of tuples (ei, w(ei))i, where
w(ei) is the weight of edge ei.

1. Give a 1-pass semi-streaming algorithm for computing an MST.

Hint: Adapt the spanning tree algorithm from the lecture.

Solution:

F ← ∅
While stream not empty:

(a) Let e be the next edge in the stream

(b) if (F ∪ {e}) does not contain a cycle then F ← F ∪ {e}

(c) else ((F ∪ {e}) does contain a cycle)

i. Let C be the edge set of the (unique) cycle in F ∪ {e}
ii. Let f be an edge of maximum weight in C \ {e}

iii. if w(f) > w(e) then F ← (F \ {f}) ∪ {e}

return F

2. Let Ei be the first i edges in the stream, Gi = (V,Ei, w|Ei) (where w|Ei denotes the weight
function w restricted to the domain Ei), and let Fi denote the collection of edges stored
by the algorithm given in the previous exercise after iteration i. Prove by induction that
Fi is a MST in Gi.

The following property may be useful:

Lemma 1. Let T ⊆ E be a spanning tree in a weighted graph G = (V,E,w). Then, if T is
not a minimum spanning tree, then there exists an edge e ∈ E \T such that w(e) < w(f),
for at least one edge f different to e in the unique cycle in T ∪ {e}.

1

Solution:

Proof.
Base case. F0 = ∅ and E0 = ∅. Observe that F0 is a MST of an empty graph.
Induction step. Let Fi be a MST in graph Gi. We will only consider the in-
teresting case when Fi+1 = (Fi \ {fi+1}) ∪ {ei+1}, where fi+1 is the edge of the
cycle Ci+1 that was removed when inserting ei+1. Observe that this implies that
w(ei+1) < w(fi+1).
Assume for the sake of a contradiction that Fi+1 is not a MST in Gi+1. Then, by
Lemma 1, there exists an edge e ∈ Ei+1 \ Fi+1 such that Fi+1 ∪ {e} contains a
unique cycle C with w(e) < w(f) for some edge f ∈ C \ {e}. Since ei+1 ∈ Fi+1 and
e /∈ Fi+1, we have e 6= ei+1 and therefore e ∈ Ei.
We will argue now that Fi∪{e} also contains a cycle C ′ such that e is not a heaviest
edge in C ′. This, however, contradicts then the fact that Fi is a MST, since we
could swap in Fi the edge e with a heaviest edge in C ′ and create a spanning tree
of less weight.
We consider two cases:

(a) First, suppose that ei+1 /∈ C. Then, C ⊆ Ei and C also constitutes a cycle in
Fi ∪ {e} with the same property that e is not a heaviest edge in this cycle.

(b) Next, suppose that ei+1 ∈ C. Then, the symmetric difference C ′ = C ⊕
(Ci+1 \ {ei+1}) (with A ⊕ B := (A \ B) ∪ (B \ A)) also forms a cycle that
necessarily contains the edges fi+1 and e (see Figure 1). Two configurations
are possible:

Suppose first that f ∈ C ′ (top illustration in Figure 1) . Then we are done
since w(e) < w(f).

Next, suppose that f /∈ C ′ (bottom illustration in Figure 1). Then, we nec-
essarily have that f ∈ Ci+1 and since the algorithm removed fi+1 from Fi

instead of f , we have w(f) ≤ w(fi+1). Since w(e) < w(f), we also have
w(e) < wfi+1

and e is thus not the heaviest edge.

2 Matchings

2.1 Weighted Matching with Restricted Edge Weights

Let G = (V,E,w) be a weighted graph with w : E → {1, 2}. Consider the following two
algorithms, which can be implemented as semi-streaming algorithms, for computing matchings:

A1: Ignore the edge weights and use the Greedy matching algorithm to compute a maximal
matching M . Return M with its edge weights.

A2: Run Greedy on the subgraph of edges of weight 1, which produces a matching M1.
In parallel, run Greedy on the subgraph of edges of weight 2, which produces a matching M2.
The output matching M is obtained by inserting every edge of M1 into M2 if possible.

1. What is the approximation guarantee of A1?

2

Figure 1: Solution to the MST exercise. Top: Case f ∈ C ′. Bottom: Case f /∈ C ′.

Solution:

Let M∗ be a maximum matching in the input graph and M be the matching
returned by A1. We know that Greedy has an approximation guarantee of 1

2 , so

|M | ≥ 1

2
|M∗| .

Since each edge weight is in {1, 2}, we have:

w(M) ≥ |M | , and

|M∗| ≥ 1

2
w(M∗) .

Combining, we obtain:

w(M) ≥ |M | ≥ 1

2
|M∗| ≥ 1

4
w(M∗) .

See Figure 2 for a worst case example.

2 1 2

Figure 2: A worst case example of A1.

2. What is the approximation guarantee of A2?

Solution:

3

Let M∗ be a maximum matching in the input graph. Let M∗1 ⊆ M∗ denote the
subset of edges of weight 1, and let M∗2 denote the subset of edges of weight 2. For
each edge m ∈ M2, let C(m) denote the set of at most 2 edges from M1 that are
incident to m. In other words, m is responsible for these at most two edges for not
being added to the final output matching M .
Next, for any i ∈ {1, 2}, observe that since Mi is maximal, every edge m ∈ M∗i is
either adjacent to an edge from Mi or is itself contained in Mi.
We will now charge the weights of the edges M∗ to the edges in M , as follows:

� Let m ∈ M∗2 : We charge w(m) to every edge that is incident to m in M2. If
there is no such edge, then m ∈M2, and we charge m by w(m).

� Let m ∈ M∗1 : Let N1(m) denote the edges of M1 that are incident to m, or,
if there are no such edges (which implies m ∈M1), let N1(m) = m. We now
charge the weight w(m) to every edge in N1(m). Then, if an edge in N1(m) is
not included in the output matching, then we transfer its charge to the edge
in M2 that prevent it from being inserted.

Observe first that we inject at least w(M∗) charge to the edges of the output
matching. It remains to bound the maximum charge of an edge in M :

� Consider an edge m ∈M1∩M , i.e., m is included in the the output matching.
Then m is charged at most 2w(m).

� Consider an edge m ∈M2. Then, m∪C(m) forms a path of length at most 3
and thus covers at most 4 vertices. This implies that m∪C(m) is incident to
at most 4 edges from M∗. Since m ∪ C(m) contains only one edge from M2

(i.e., the edge m), at most two of these 4 edges are from M∗2 . Hence, m has
a charge of at most 2 · 2 + 2 · 1 = 3w(m) (since w(m) = 2).

Overall, an edge in the output matching receives a charge at most three times its
own weight. Hence, w(M∗) ≤ 1

3w(M). See Figure 3 for a worst case example.

2
1 1

1 1

2 2

Figure 3: A worst case example of A2.

2.2 Weighted Matching Algorithm from the Lecture

Give an example of an input stream on which the algorithm for weighted matching discussed
in the lecture produces an approximation ratio close to 1/6. Such an example input stream
demostrates that our analysis is best possible.

Solution:

4

Figure 4 shows a hard instance that can easily be extended to yield an approxi-
mation ratio arbitrarily close to 6. In this example, a weight x− means a value
of x − ε, for some arbitrarily small ε > 0. Edges arrive in the following order:
1, 2−, 2, 4−, 4, 8−, . . . , 64, 128−, 128−. Observe that the algorithm outputs the edge with
weight 64. The red edges form an optimal matching of weight 382. The algorithm
therefore produces a 64/382 ≈ 1/5.968 approximation.

1 2 4 8 16 32 64

2− 4− 8− 16− 32− 64− 128− 128−

Figure 4: Hard Instance example for question 2.3.

3 Bounding the Error Probability of Randomized Algorithms

Randomized algorithms often invoke subroutines that are themselves randomized. Assume that
our algorithm A executes the subroutines R1, R2, . . . , Rk and each subroutine Ri has a failure
probability of εi. Denote by Ei the event that subroutine i fails. Observe that Ei and Ej may
be arbitrarily correlated. Our algorithm fails if at least one subroutine fails. We would therefore
like to compute the probability:

Pr[E1 ∪ E2 ∪ · · · ∪ Ek] .

Show by induction over k that

Pr[E1 ∪ E2 ∪ · · · ∪ Ek] ≤
k∑

i=1

εi .

Remark: The bound we ask you to prove is known as the union bound.

Solution:

Proof.
Base case. Pr[E1] = ε1 ≤ ε1
Induction step. Assume that Pr[E1 ∪E2 ∪ · · · ∪Ek] ≤

∑k
i=1 εi holds and show that it

holds for k + 1. Using the fact that all probabilities are non-negative and Pr[A ∪ B] =
Pr[A] + Pr[B]− Pr[A ∩B], we obtain:

Pr[∪ki=1Ei ∪ Ek+1] = Pr[∪ki=1Ei] + Pr[Ek+1]− Pr[∪ki=1Ei ∩ Ek+1]

≤ Pr[∪ki=1Ei] + Pr[Ek+1] ≤
k∑

i=1

εi + εk+1 =

k+1∑
i=1

εi .

5

4 Sampling min{k, deg(v)} Edges Incident to a Given Vertex
(hard!)

The insertion-deletion matching algorithm discussed in Lecture 13 solves the following subprob-
lem:

Let v ∈ V be a vertex. Compute min{k, deg(v)} arbitrary edges incident to v in an insertion-
deletion graph stream.

This is achieved by running enough l0-samplers on the substream of edges incident to v.
Assuming that the l0-samplers never fail (recall that the samplers themselves have a small error
probability, but for simplicity, we assume that they do not fail here), how many l0-samplers
need to be run in parallel in order to solve this task?

Observe that this problem can be rephrased as follows: We have deg(v) bins. How many
balls are needed so that, if we throw each ball into a random bin, at least min{k,deg(v)} bins
are non-empty?

Hint: Let ti be the expected number of balls needed to hit an empty bin, conditioned on
i− 1 bins being already non-empty. Using the ti, what is the expected number of balls needed
overall? Then, use the Chernoff bound to obtain a high probability result.

6

