Graph Streams: Connectivity and Bipartiteness
Input graph $G = (V, E), n = |V|, m = |E|$

How to process G in a streaming fashion?

1. Streaming (or linear or sequential) access
2. Sublinear space
Edge-arrival Model: (Insertion-only Model)
- Sequence of the edges of the input graph;
- No assumption on the order of the edges, e.g.,
 \[S = v_1 v_2, v_4 v_5, v_2 v_3, v_2 v_5, v_1 v_3, v_3 v_4. \]
Sublinear Space

Stream length: m edges

How large can m be in terms of n?

Lemma. A graph on n vertices has $O(n^2)$ edges.

Proof.
- Every (simple) graph is a subgraph of the complete graph, i.e., the graph that contains all potential edges;
- The complete graph on n vertices has $\binom{n}{2} = \frac{n(n-1)}{2} = \theta(n^2)$ edges.
Semi-streaming Algorithms

Space Considerations:
- Space $o(m)$ is sublinear space;
- We will however focus on space in terms of n;
- Space $o(n^2)$ is therefore sublinear for very dense graphs (and non-trivial).

Semi-streaming Algorithms: (Feigenbaum et al. 2004)
- Streaming algorithms with space $O(n \ poly \ log \ n) = \Theta(n \ log^c \ n)$, for some constant c, are called “semi-streaming” algorithms;
- Allows storing a poly-logarithmic number of edges per vertex (on average);
- Sublinear for graphs with $m = \Omega(n^{1+\varepsilon})$, for any $\varepsilon > 0$.
Why Semi-streaming?

Why space \(O(n \text{ poly } \log n) \)? (e.g., why not \(O(\sqrt{n}) \)?)

1. Output size of graph problems

- **Maximum Matching**
 - Largest subset of vertex-disjoint edges
 - Size: at most \(n / 2 \)

- **Spanning Tree**
 - Subtree that spans all vertices of the graph
 - Size: \(n - 1 \)

- **Maximum Independent Set**
 - Largest subset of non-adjacent vertices
 - Size: at most \(n \)
Why Semi-streaming? (2)

Why space $O(n \ poly \ log \ n)$?

2. Many problems provably cannot be solved with less space!

- **Connectivity:** Is the graph connected?
- **Bipartiteness:** Is the graph bipartite?
- **Cycle Freeness:** Does the graph contain a cycle?

Theorem (Sun, Woodruff 2015): Every 1-pass streaming algorithm for **Connectivity, Bipartiteness, or Cycle Freeness** requires space $\Omega(n \ log \ n)$.

\[\]
Practical Considerations

1. **Big graphs exist and are important**
 - Social Network graphs
 (Facebook: 2.6 billion active users
 -> graph on 2.6 billion vertices...)
 - Web graph
 - Graph databases
 - Brain models

2. **Big graphs and Streaming?**
 - Memory considerations
 - Facebook: stream of new friendships
 forms edge stream
 - Twitter updates
First Graph Streaming Algorithm: Connectivity

Goal: Semi-streaming algorithm for Connectivity in edge-arrival model

- **Semi-streaming**: space $O(n \ poly \ log \ n)$
- **Connectivity**: output $\begin{cases} 0, & \text{if } G \text{ is not connected;} \\ 1, & \text{if } G \text{ is connected} \end{cases}$
- **Edge-arrival model**: Edges arrive in arbitrary order

Idea:
- Maintain a **spanning forest**:

 $G = (V, E)$ connected: $F \subseteq E$ is a **spanning tree** if F (or (V, F)) is a tree that covers every vertex $v \in V$

 $G = (V, E)$ disconnected: $F \subseteq E$ is a **spanning forest** if F is the disjoint union of spanning trees of the connected components of G

- If spanning forest becomes a tree then graph is connected.

Can we maintain a spanning forest in semi-streaming space?
First Graph Streaming Algorithm: Connectivity

Maintaining a Spanning Forest in Semi-streaming Space:

1. \(F \leftarrow \emptyset \)
2. While(stream not yet empty)
 a) Let \(e \) be next edge in stream
 b) if \((F \cup \{e\}) \) does not contain a cycle then
 \(F \leftarrow F \cup \{e\} \)
3. return 1 if \(F \) is a tree (e.g. \(|F| = n - 1\)) and 0 otherwise

Analysis:
- Let \(E_i \) be the set consisting of the first \(i \) edges, let \(G_i = (V, E_i) \)
- Denote by \(F_i \) variable \(F \) after iteration \(i \)
- By induction: \(F_i \) is a spanning forest in \(G_i \) \(\Rightarrow |F_i| \leq n - 1 \), for every \(i \) \(\Rightarrow F_m \) is spanning forest in \(G_m = G \).
- Store at most \(n - 1 \) edges, which yields space \(O(n \log n) \).
First Graph Streaming Algorithm: Connectivity

Induction:
- **Hypothesis:** F_i is spanning forest in G_i
- **Induction Start:** $F_0 = \emptyset$ is spanning forest in G_0
- **To show:** F_{i+1} is spanning forest in G_{i+1}

Case 1: $F_i \cup \{e\}$ does not contain a cycle
- $F_{i+1} = F_i \cup \{e\}$ is clearly a forest as it remains acyclic
- e merges two components in G, and e connects the two spanning trees of the two components in F_i, F_{i+1} is thus a spanning forest

Case 2: $F_i \cup \{e\}$ contain a cycle
- $F_{i+1} = F_i \Rightarrow F_{i+1}$ is a forest
- Connected components do not change, F_{i+1} is thus a spanning forest
Testing Bipartiteness

Goal: Semi-streaming algorithm for Testing Bipartiteness

Definition: A graph $G = (V, E)$ is bipartite if (the three items are equivalent)

1. $V = A \cup B$ (V is the disjoint union of A and B) and all edges have one endpoint in A and one in B; (we then also write $G = (A, B, E)$)

2. G admits a 2-coloring, i.e., an assignment $c: V \rightarrow \{0, 1\}$ of (at most) two colors to V such that no edge is *monochromatic*, i.e., both endpoints have the same color

3. G does not contain any odd-length cycles.
Testing Bipartiteness: Algorithm

Semi-streaming Algorithm for Bipartiteness Testing

1. \(F \leftarrow \emptyset \)

2. While(stream not yet empty)
 a) Let \(e \) be next edge in stream
 b) if \((F \cup \{e\})\) does not contain a cycle then
 \(F \leftarrow F \cup \{e\} \)
 else if \((F \cup \{e\})\) contains an odd-length cycle then
 return “not bipartite”

3. return “bipartite”

Analysis:
- Space \(O(n \log n) \) as in Connectivity algorithm
- Why is the algorithm correct?
Testing Bipartiteness: Algorithm

Correctness:

1st case: Algorithm reports “not bipartite”
Only happens when odd cycle detected. Algorithm therefore correct.

2nd case: Algorithm reports “bipartite”
- Consider spanning forest \((V, F)\) when algorithm terminates
- Define 2-coloring \(c: V \rightarrow \{0, 1\}\) that colors the forest \((V, F)\)
- **Claim:** \(c\) is also a valid coloring of input graph \(G = (V, E)\)

Suppose it is not. Then, \(\exists v_1 v_2 \in E\) such that \(c(v_1) = c(v_2)\). Observe that nodes with the same color are at even distance in \((V, F)\). Let \(P \subseteq F\) be the edges of the path from \(v_1\) to \(v_2\) in \((V, F)\). Then \(P \cup \{v_1, v_2\}\) forms an odd cycle, a contradiction to the fact that the algorithm did not enter the first case.

\(\square\)
References

- Xiaoming Sun, David P. Woodruff: “Tight Bounds for Graph Problems in Insertion Streams”. APPROX-RANDOM 2015: 435-448