Reminder: \(\log n \) denotes the binary logarithm, i.e., \(\log n = \log_2 n \).

1 **Recurrences: Substitution Method**

1. Consider the following recurrence:

 \[T(1) = 1 \text{ and } T(n) = T(n-1) + n \]

 Show that \(T(n) \in O(n^2) \) using the substitution method.

2. Consider the following recurrence:

 \[T(1) = 1 \text{ and } T(n) = T(\lceil n/2 \rceil) + 1 \]

 Show that \(T(n) \in O(\log n) \) using the substitution method.

 Hint: Use the inequality \(\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}} = \frac{n}{2^{1/2}} \), which holds for all \(n \geq 2 \). Use \(n = 2 \) as your base case.

2 **Search in a Sorted Matrix (difficult!)**

We are given an \(n \times n \) integer matrix \(A \) that is sorted both row- and column-wise, i.e., every row is sorted in non-decreasing order from left to right, and every column is sorted in non-decreasing order from top to bottom. Give a divide-and-conquer algorithm that answers the question:

“Given an integer \(x \), does \(A \) contain \(x \)?”

What is the runtime of your algorithm?