Reminder: \(\log n \) denotes the binary logarithm, i.e., \(\log n = \log_2 n \).

1. **Recurrences: Substitution Method**

1. Consider the following recurrence:

\[
T(1) = 1 \quad \text{and} \quad T(n) = T(n-1) + n
\]

Show that \(T(n) \in O(n^2) \) using the substitution method.

Solution. We need to show that \(T(n) \leq C \cdot n^2 \), for some suitable constant \(C \). To this end, we first plug our guess into the recurrence:

\[
T(n) = T(n-1) + n \leq C(n-1)^2 + n.
\]

It is required that \(n^2 - 2n + 1 \leq 0 \) for every \(C \geq 1 \).

Observe that \(n^2 - 2n + 1 \) holds for every \(n \geq 1 \). Our guess thus holds for every \(C \geq 1 \).

It remains to verify the base case. We have \(T(1) = 1 \) and \(C1^2 = C \). Hence, \(C1^2 \leq T(1) \) holds for every \(C \geq 1 \). We thus choose \(C = 1 \).

We have shown that \(T(n) \leq Cn^2 = n^2 \) holds for every \(n \geq 1 \). This implies that \(T(n) = O(n^2) \).

2. Consider the following recurrence:

\[
T(1) = 1 \quad \text{and} \quad T(n) = T(\lfloor n/2 \rfloor) + 1
\]

Show that \(T(n) \in O(\log n) \) using the substitution method.

Hint: Use the inequality \(\lfloor n/2 \rfloor \leq \frac{n}{\sqrt{2}} = \frac{n}{2^{1/2}} \), which holds for all \(n \geq 2 \). Use \(n = 2 \) as your base case.
Solution. We need to show that $T(n) \leq C \cdot \log n$, for a suitable constant C. To this end, we plug our guess into the recurrence:

$$T(n) = T(\lceil n/2 \rceil) + 1 \leq C \cdot \log \left(\frac{n}{\sqrt{2}} \right) + 1 = C \log(n) - C \cdot \frac{1}{2} \log(2) + 1 = C \log(n) - \frac{1}{2} C + 1,$$

where we used the inequality $\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}}$. It is required that $C \log(n) - \frac{1}{2} C + 1 \leq C \log(n)$:

$$C \log(n) - \frac{1}{2} C + 1 \leq C \log(n)$$

$$1 \leq \frac{1}{2} C$$

$$2 \leq C.$$

The “induction step” part of the proof thus works for any $C \geq 2$. Regarding the base case, we will consider $n = 2$. We have:

$$T(2) = T(1) + 1 = 2.$$

We thus need to show that $2 \leq C \log 2$. This holds for every $C \geq 2$. We can thus pick the value $C = 2$. This proves that $T(n) \in O(\log n)$.

2 Search in a Sorted Matrix

We are given an n-by-n integer matrix A that is sorted both row- and column-wise, i.e., every row is sorted in non-decreasing order from left to right, and every column is sorted in non-decreasing order from top to bottom. Give a divide-and-conquer algorithm that answers the question:

“Given an integer x, does A contain x?”

What is the runtime of your algorithm?

Solution. For simplicity, we assume that n is a power of two in this solution. We define the following submatrices of matrix A:

$$A_{11} = A[0 \ldots \frac{n}{2} - 1, 0 \ldots \frac{n}{2} - 1]$$

$$A_{21} = A[\frac{n}{2} \ldots n, 0 \ldots \frac{n}{2} - 1]$$

$$A_{12} = A[0 \ldots \frac{n}{2} - 1, \frac{n}{2} \ldots n - 1]$$

$$A_{22} = A[\frac{n}{2} \ldots n - 1, \frac{n}{2} \ldots n - 1]$$

Observe that the dimensions of all submatrices are $n/2 \times n/2$.

We first check whether $A[\frac{n}{2} - 1, \frac{n}{2} - 1] = x$. If this is the case then we have found x and we are done. Otherwise, we distinguish the following two cases:
1. Suppose that \(A_{\frac{n}{2}-1, \frac{n}{2}-1} < x \) holds. Then, since \(A \) is sorted in both column and row order, it is not hard to see that \(x \) is not contained in \(A_{11} \). We then invoke our algorithm recursively and search for \(x \) in the three submatrices \(A_{12}, A_{21}, A_{22} \).

2. Suppose that \(A_{\frac{n}{2}-1, \frac{n}{2}-1} > x \) holds. Then, similar as before, it is not hard to see that \(x \) is not contained in \(A_{22} \). We then invoke our algorithm recursively and search for \(x \) in the three submatrices \(A_{11}, A_{12}, A_{21} \).

Observe that the proposed algorithm is a recursive algorithm. We thus need to decide what to do if the input to a recursive call is a \(1 \times 1 \) matrix. In this case we simply check whether the single element in the matrix equals \(x \) in \(O(1) \) time.

Let \(T(n) \) be the runtime of the algorithm when executed on an input array of dimension \(n \times n \). We thus obtain the following recurrence:

\[
T(n) = \begin{cases}
O(1) , & \text{if } n = 1 , \\
3T(n/2) + O(1) , & \text{otherwise}.
\end{cases}
\]

It remains to solve the recurrence \(T(n) \). First, we eliminate the \(O(1) \) terms and replace them with a large enough constant \(C \):

\[
T(n) = \begin{cases}
C , & \text{if } n = 1 , \\
3T(n/2) + C , & \text{otherwise}.
\end{cases}
\]

Our recursion is simple enough to obtain a solution via the recursion tree method. In the lecture, we used the recursion tree method in order to obtain a guess the we then verified using the substitution method. The recursion here is however simple enough to conduct a complete analysis using the recursion tree.

From the recursion tree, we see that the tree has \(\log(n) + 1 \) levels. Denoting the root of the tree as level 0, we see that level \(i \) has \(3^i \) nodes. Furthermore, every node is labeled by \(C \). The total work therefore is:

\[
\sum_{i=0}^{\log n} 3^i C = C \cdot \sum_{i=0}^{\log n} 3^i = C \cdot \frac{3^{\log(n)+1} - 1}{3 - 1} = \frac{C}{2} \cdot \left(2^{\log(3) \log(n) + \log(3)} - 1 \right) \leq \frac{C}{2} \cdot \left(2^{\log(3) \log(n) + \log(3)} \right) = \frac{C}{2} \cdot \left(n^{\log 3} \cdot 3 \right) = O(n^{\log 3}) \approx O(n^{1.5849...}) .
\]

We used the formula \(\sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1} \) in this calculation.

Last, I would like to mention that there exists a solution to this problem that runs in time \(O(n) \). Can you think of such a solution?