
Exercise Sheet 5

COMS10007 Algorithms 2019/2020

21.04.2020

1 Heap Sort

Consider the following array A:

4 3 9 10 14 8 7 2 1 7

1. Interpret A as a binary tree as in the lecture (on heaps).

2. Run Create-Heap() on the initial array. Give the sequence of node exchanges. Draw the
resulting heap.

3. What is the worst-case runtime of Heapify()?

4. Explain how heap sort uses the heap for sorting. Explain why the algorithm has a worst-
case runtime of O(n log n).

5. Give an array of length n so that heap-sort runs in O(n) time on A.

2 Merge Sort

Illustrate how the Mergesort algorithm sorts the following array using a recursion tree:

11 7 2 5 9 6 1

3 Quick Sort

Consider an array A of length n so that A[i] = n− i. For example, for n = 10 we are given the
following array:

A = 10 9 8 7 6 5 4 3 2 1 .

The goal is to sort A in non-decreasing order which in this case is equivalent to reversing it.
The pivot plays a central role in Quicksort. Consider the following options as a choice for the
pivot:

1. The right-most position.

2. The element at position dn/2e.

3. The left-most position.

For each of these options, what is the runtime of Quicksort on A? State your answers using
Θ(.)-notation. Justify your answers.

1



4 Countingsort and Radixsort

1. Illustrate how Countingsort sorts the following array:

4 2 2 0 1 4 2

2. Illustrate how Radixsort sorts the following binary numbers:

100110 101010 001010 010111 100000 000101

3. Radixsort sorts an array A of length n consisting of d-digit numbers where each digit is
from the set {0, 1, . . . , b} in time O(d(n + b)).

We are given an array A of n integers where each integer is polynomially bounded, i.e.,
each integer is from the range {0, 1, . . . , nc}, for some constant c. Argue that Radixsort
can be used to sort A in time O(n).

Hint: Find a suitable representation of the numbers in {0, 1, . . . , nc} as d-digit numbers
where each digit comes from a set {0, 1, . . . , b} so that Radixsort runs in time O(n). How
do you chose d and b?

5 Loop Invariant for Radixsort

Radixsort is defined as follows:

Require: Array A of length n consisting of d-digit numbers where each digit
is taken from the set {0, 1, . . . , b}

1: for i = 1, . . . , d do
2: Use a stable sort algorithm to sort array A on digit i
3: end for

(least significant digit is digit 1)

In this exercise we prove correctness of Radixsort via the following loop invariant:
At the beginning of iteration i of the for-loop, i.e., after i has been updated in Line 1 but

Line 2 has not yet been executed, the following holds:

The integers in A are sorted with respect to their last i− 1 digits.

1. Initialization: Argue that the loop-invariant holds for i = 1.

2. Maintenance: Suppose that the loop-invariant is true for some i. Show that it then also
holds for i + 1.

Hint: You need to use the fact that the employed sorting algorithm as a subroutine is
stable.

3. Termination: Use the loop-invariant to conclude that A is sorted after the execution of
the algorithm.

2


