1 Algorithm Design

Describe an $\Theta(n \log n)$ time algorithm that, given an array A of n integers and another integer x, determines whether or not there are two elements in A whose sum equals x (Hint: Sorting!).

Solution. I will describe two different solutions. Solution 1 is the solution that I had in mind. During the exercise class, one of you came up with a simpler and much more elegant solution! This solution is presented as Solution 2.

Solution 1. We first sort the array A in time $\Theta(n \log n)$. Assume from now on that A is sorted. Next, we check whether A contains two elements of value $x/2$ in time $\Theta(\log n)$ (using binary search). If there are such elements then we are done. Else, we know that if there is a solution then it consists of two elements x_1, x_2 with $x_1 < x/2$ and $x_2 > x/2$. Let i be the position in array A such that $A[i] < x/2$ and $A[i + 1] \geq x/2$. Let $j = i + 1$. Consider now the following loop:

- If $A[i] + A[j] > x$ then subtract 1 from i.
- If $A[i] + A[j] = x$ then we found a solution and we stop.

We stop this procedure once $i = -1$ or $j = n$ as we then have not found a solution. The runtime of this procedure is clearly $\Theta(n)$, since i and j together “walk” at most a distance of n.

To see why this works, let k_1, k_2 with $k_1 < k_2$ be the indices of a solution, i.e., $A[k_1] + A[k_2] = x$. Observe that, initially, we have

$$k_1 \leq i < j \leq k_2.$$ \hspace{1cm} (1)

If the algorithm “misses” the solution k_1, k_2, then there is moment when we updated either i or j and then Inequality 1 is no longer true, i.e., we either updated i to become value $k_1 - 1$ or we updated j to become value $k_2 + 1$.

Suppose first that variable i was updated at this moment. This implies that the algorithm went from the configuration $(i = k_1, j)$ to the configuration $(i = k_1 - 1, j)$. By construction of the algorithm, this only happens if $A[k_1] + A[j] > x$. This however is a contradiction, since $A[k_1] + A[j] \leq A[k_1] + A[k_2] = x$ (since $j \leq k_2$).

Suppose next that variable j was updated at this moment. This implies that the algorithm went from the configuration $(i, j = k_2)$ to the configuration $(i, j = k_2 + 1)$. By construction of the algorithm, this only happens if $A[i] + A[k_2] < x$. This however is a contradiction, since $A[i] + A[k_2] > A[k_1] + A[k_2] = x$ (since $i \geq k_1$).

The algorithm therefore cannot miss the configuration (k_1, k_2).

Solution 2. Again, we first sort the array A in $\Theta(n \log n)$ time. Assume from now on that A is sorted. Next, we walk through the array from left to right with a for loop (using variable $i = 0 \ldots n - 1$). In iteration i, we use a binary search to check whether the array A contains an element with value $x - A[i]$. A binary search takes time $O(\log n)$. Since we do a binary search in each iteration, and there are n iterations at most, the runtime is $O(n \log n)$. This is a very nice and elegant solution. Thanks to the student who came up with it.

✓

2 Bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent elements that are out of order:

Algorithm 1 Bubblesort

Require: Array A of n integers
1: for $i = 0$ to $n - 2$ do
2: for $j = n - 1$ downto $i + 1$ do
5: end if
6: end for
7: end for

1. What is the worst-case runtime of Bubblesort?

Solution. Observe that the operation in Line 4, i.e., exchanging two elements in the array, takes time $O(1)$. The runtime is therefore bounded by the number of times Line 4 is executed. The outer loop goes from $i = 0$ to $n - 2$, and the inner loop goes from $j = n - 1$ downto $i + 1$. We therefore compute:

$$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} O(1) = O(1) \cdot \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = O(1) \cdot \sum_{i=0}^{n-2} ((n - 1) - (i + 1) + 1)$$

$$= O(1) \cdot \sum_{i=0}^{n-2} (n - i - 1) = O(1) \cdot \left((n - 1)^2 - \sum_{i=0}^{n-2} i \right)$$

$$= O(1) \left((n - 1)^2 - \frac{(n - 2)(n - 1)}{2} \right) \leq O(1) \left((n - 1)^2 / 2 \right)$$

$$= O(n^2).$$

✓

2. Consider the loop in lines 2 – 6. Prove that the following invariant holds at the beginning of the loop:

$$A[j] \leq A[k], \text{ for every } k \geq j$$

Give a suitable termination property of the loop.
Consider now the loop in lines 1−k. We are guaranteed that Termination: \(k \geq k \) holds). Concerning \(k \)

Solution.

Initialization: We need to show that the property is true prior to the first iteration of the loop. Let \(j = n - 1 \). Then the property translates to \(A[n - 1] \leq A[k] \) for every \(k \geq n - 1 \). This is trivially true since the only value for \(k \) such that \(k \geq n - 1 \) that also lies within the boundaries of the array is \(k = n - 1 \). It is of course true that \(A[n - 1] \leq A[n - 1] \). The property thus holds.

Maintenance: Suppose that the property is true before an iteration \(j \) of the loop, i.e., \(A[j] \leq A[k] \) holds for every \(k \geq j \). We will show that the property also holds before the next iteration. Observe that before the next iteration, the value of \(j \) is decreased. We thus need to show that after the current iteration, \(A[j - 1] \leq A[k] \) holds for every \(k \geq j - 1 \).

Considering the algorithm, there are two cases: Either the if-condition evaluates to true, or it evaluates to false.

Case 1: \(A[j] \geq A[j - 1] \). (i.e., the if evaluates to false)

In this case nothing happens to the array elements. We need to show that \(A[j - 1] \leq A[k] \), for every \(k \geq j - 1 \). We already know that \(A[j] \leq A[k] \) for every \(k \geq j \). Since \(A[j - 1] \leq A[j] \), the loop invariant is thus also true.

Case 2: \(A[j] < A[j - 1] \). (i.e., the if evaluates to true)

In this case, \(A[j] \) is exchanged with \(A[j - 1] \). We need to show that after the exchange \(A[j - 1] \leq A[k] \) for every \(k \geq j - 1 \). Consider thus the state of the array after the exchange. Concerning \(k = j - 1 \), this is trivially true (i.e, \(A[j - 1] \leq A[j - 1] \) clearly holds). Concerning \(k = j \), this is also true due to the if-statement evaluating to true and the fact that we exchanged the two elements. Concerning all other values of \(k \), i.e., \(k \geq j + 1 \), this follows from the loop invariant being true at the beginning of the iteration.

Termination: We are guaranteed that \(A[i] \leq A[k] \), for every \(k \geq i \).

3. Consider now the loop in lines 1−7. Prove that the following invariant holds at the beginning of the loop:

The subarray \(A[0, i] \) is sorted.

Give a suitable termination property that shows that \(A \) is sorted upon termination.

Solution. We will prove the even stronger statement: “At the beginning of iteration \(i \), the subarray \(A[0, i] \) is sorted and \(A[0, i - 1] \) consists of the \(i - 1 \) smallest elements of \(A \).

Initialization: We need to show that the property is true prior to the first iteration of the loop. At the beginning of the first iteration we have \(i = 0 \). Then the property translates to “the subarray \(A[0\ldots 0] \) is sorted and \(A[0, -1] \) consists of the \(i - 1 \) smallest elements of \(A \)”.

This is trivially true, since \(A[0\ldots 0] = A[0] \) consists of a single element, and \(A[0\ldots -1] \) is empty.

Maintenance: Suppose that the property is true before an iteration \(i \) of the loop, i.e., \(A[0\ldots, i] \) is sorted and \(A[0\ldots i - 1] \) are the \(i - 1 \) smallest elements of \(A \). We will show that the property also holds before the next iteration. By the termination property stated in the last exercise, we have that \(A[i] \leq A[k] \), for every \(k \geq i \), or, in other words, \(A[i] \) is the smallest element in \(A[i, n - 1] \). By the loop invariant, \(A[0,\ldots, i - 1] \) are the \(i - 1 \) smallest elements in increasing order. Hence, the subarray \(A[0,\ldots, i] \) contains the \(i \) smallest elements in \(A \) in increasing order. This implies further that the subarray \(A[0, i+1] \) is sorted (note that no matter which element is at position \(i + 1 \), the array is sorted).

Termination: We are guaranteed that \(A \) is sorted.
3 Proofs by Induction (optional and difficult!)

Let \(n \) be a positive number that is divisible by 23, i.e., \(n = k \cdot 23 \), for some integer \(k \geq 1 \). Let \(x = \lfloor n/10 \rfloor \) and let \(y = n \% 10 \) (the rest of an integer division). Prove by induction on \(k \) that 23 divides \(x + 7y \).

Example: Consider \(k = 4 \). Then \(n = 92 \), \(x = 9 \) and \(y = 2 \). Observe that the quantity \(x + 7y = 9 + 7 \cdot 2 = 23 \) is divisible by 23.

Solution. We prove the statement by induction over \(k \). To this end, let \(x_i \) be the value of \(x \) when \(n = i \cdot 23 \), and similarly, let \(y_i \) be the value of \(y \) when \(n = i \cdot 23 \).

Base case: \((k = 1) \)

In this case, \(n = 1 \cdot 23 \), \(x_1 = 2 \) and \(y_1 = 3 \). The quantity \(x_1 + 7y_1 = 23 \), which is divisible by 23.

Induction Hypothesis: Suppose that \(x_i + 7y_i \) is divisible by 23.

Induction Step: We will show that \(x_{i+1} + 7y_{i+1} \) is also divisible by 23. We conduct a case distinction:

- Suppose that \(y_i \leq 6 \). Then \(y_{i+1} = y_i + 3 \) and \(x_{i+1} = x_i + 2 \). We obtain:
 \[
 x_{i+1} + 7y_{i+1} = x_i + 2 + 7(y_i + 3) = x_i + 7y_i + 2 + 21 = x_i + 7y_i + 23 .
 \]
 Since \(x_i + 7y_i \) is divisible by 23 and 23 is of course divisible by 23, we have \(x_{i+1} + 7y_{i+1} \) is divisible by 23.

- Suppose that \(y_{i+1} > 6 \). Then, \(y_{i+1} = y_i - 7 \) and \(x_{i+1} = x_i + 3 \). We obtain:
 \[
 x_{i+1} + 7y_{i+1} = x_i + 3 + 7(y_i - 7) = x_i + 7y_i + 3 - 49 = x_i + 7y_i - 46 .
 \]
 Again, since \(x_i + 7y_i \) is divisible by 23 and 46 is divisible by 23, we have \(x_{i+1} + 7y_{i+1} \) is divisible by 23.

\(\checkmark \)