Exercise Sheet 1 COMS10007 Algorithms 2019/2020

04.02.2020

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 **O-notation:** Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture.

- 1. $10 \in O(1)$.
- 2. $5n \in O(n)$.
- 3. $n^2 + 10n \in O(\frac{1}{10}n^3)$.
- 4. $\sum_{i=1}^{n} i \in O(4n^2)$.

$\mathbf{2}$ **Racetrack** Principle

1. Use the racetrack principle to prove the following statement:

 $n \leq e^n$ holds for every $n \geq 1$.

2. Use the racetrack principle and determine a value n_0 such that

$$\frac{2}{\log n} \le \frac{1}{\log \log n}$$
 holds for every $n \ge n_0$. (Difficult!)

Hint: Transform the inequality and eliminate the log-function from one side of the inequality before applying the racetrack principle. Recall that $(\log n)' = \frac{1}{n \ln(2)}$. The inequality $\ln(2) \ge 1/2$ may also be useful.

3 **O-notation:** Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

- 1. $f \in O(h_1), g \in O(h_2)$ then $f + g \in O(h_1 + h_2)$. 2. $f \in O(h_1), g \in O(h_2)$ then $f \cdot g \in O(h_1 \cdot h_2)$.
- 3. $2^n \in O(n!)$

4 Fast Peak Finding

Consider the following variant of FAST-PEAK-FINDING where the " \geq " sign in the condition in instruction 4 is replaced by a "<" sign:

1. if A is of length 1 then return 0
2. if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
3. if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
4. Otherwise, if $A[\lfloor n/2 \rfloor - 1] < A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING $(A[0, \lfloor n/2 \rfloor - 1])$
5. else return $\lfloor n/2 \rfloor + 1 + \text{Fast-Peak-Finding}(A[\lfloor n/2 \rfloor + 1, n - 1])$

- 1. Give an example instance of length 8 on which this algorithm fails.
- 2. Consider now the correct version of FAST-PEAK-FINDING given in the lecture. Suppose that we replaced the $\lfloor n/2 \rfloor$ by $\lfloor n/10 \rfloor$ throughout the algorithm. Would the algorithm still work? Would it be more or less efficient?

5 Finding Two Peaks (optional and very difficult!)

We are given an integer array A of length n that has exactly two peaks. The goal is to find both peaks. We could do this as follows: Simply go through the array with a loop and check every array element. This strategy has a runtime of O(n) (requires $c \cdot n$ array accesses, for some constant c). Is there a faster algorithm for this problem (e.g. similar to FAST-PEAK-FINDING)? If yes, give such an algorithm. If no, justify why there is no such algorithm.