In-class Test COMS10007 Algorithms 2019/2020

10.03.2020

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$. We also write $\log^c n$ as an abbreviation for $(\log n)^c$.

Make sure to put your name on every piece of paper that you hand in!

O-notation 1

- 1. Let $f : \mathbb{N} \to \mathbb{N}$ be a function. Define the set O(f(n)).
- 2. Give a formal proof of the statement:

$$2n^2 + 5n \in O(n^2) \ .$$

- 3. For each of the following statements, indicate whether it is true of false: (no justification needed)
 - (a) $10n \in O(n^{\log n})$
 - (b) $\log^2 n \in O(n^3)$
 - (c) $\frac{1}{2}\log n \in O(\sqrt{\log n})$

(d)
$$n! \in O(\sum_{i=0}^{n} 2^{i})$$

- (d) $n! \in O(\sum_{i=0}^{n} 2^{i})$ (e) $2^{\sqrt{\log \log n}} \in O(\log^2 n)$
- (f) $f(n) \in \Theta(q(n))$ implies $q(n) \in \Omega(f(n))$
- (g) $f(n) \in O(q(n))$ implies $2^{f(n)} \in O(2^{g(n)})$

$\mathbf{2}$ Sorting

1. What is the runtime of Insertionsort in Θ -notation (our aim is to sort the input in increasing order) on the following array of length n: (no justification needed)

$$A[i] = 1$$
, if $0 \le i \le \lfloor \frac{n}{2} \rfloor$, and $A[i] = 0$ otherwise

- 2. Heapsort interprets an array of length n as a binary tree. What is the runtime of the BUILD-HEAP() operation that transforms the initial binary tree into a heap? (no justification needed)
- 3. Suppose that Mergesort is executed on an array of length 2^k , for some integer k. What is the height of the corresponding recursion tree of this execution in Θ -notation? (no justification needed)

Continued on next page...

3 Loop Invariant

Consider the following algorithm: (it operates on an array A of length n of positive integers)

```
Algorithm 1

Require: A is an array of n positive integers

1: x \leftarrow \frac{A[0]}{A[1]}

2: for i \leftarrow 1, \dots, n-2 do

3: x \leftarrow x \cdot \frac{A[i]}{A[i+1]}

4: end for

5: return x
```

Consider the following loop invariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in Line 3 is executed) the following property holds:]
$x = rac{A[0]}{A[i]}$.	

- 1. Initialization: Argue that at the beginning of the first iteration, i.e. when i = 1, the loop invariant holds.
- 2. Maintenance: Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop invariant then also holds at the beginning of iteration i + 1.
- 3. *Termination:* What does the algorithm compute? Argue that this follows from the loop invariant.