Reminder: \(\log n \) denotes the binary logarithm, i.e., \(\log n = \log_2 n \). We also write \(\log^c n \) as an abbreviation for \((\log n)^c \).

Make sure to put your name on every piece of paper that you hand in!

1 **\(O \)-notation**

1. Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be a function. Define the set \(O(f(n)) \).

2. Give a formal proof of the statement:

\[
2n^2 + 5n \in O(n^2) .
\]

3. For each of the following statements, indicate whether it is true of false: (no justification needed)

 (a) \(10n \in O(n \log n) \)
 (b) \(\log^2 n \in O(n^3) \)
 (c) \(\frac{1}{2} \log n \in O(\sqrt{\log n}) \)
 (d) \(n! \in O(\sum_{i=0}^{n} 2^i) \)
 (e) \(2^{\log \log n} \in O(\log^2 n) \)
 (f) \(f(n) \in \Theta(g(n)) \) implies \(g(n) \in \Omega(f(n)) \)
 (g) \(f(n) \in O(g(n)) \) implies \(2^{f(n)} \in O(2^{g(n)}) \)

2 **Sorting**

1. What is the runtime of Insertionsort in \(\Theta \)-notation (our aim is to sort the input in increasing order) on the following array of length \(n \): (no justification needed)

\[
A[i] = 1, \text{ if } 0 \leq i \leq \lfloor \frac{n}{2} \rfloor, \text{ and } A[i] = 0 \text{ otherwise}
\]

2. Heapsort interprets an array of length \(n \) as a binary tree. What is the runtime of the \texttt{BUILD-HEAP()} operation that transforms the initial binary tree into a heap? (no justification needed)

3. Suppose that Mergesort is executed on an array of length \(2^k \), for some integer \(k \). What is the height of the corresponding recursion tree of this execution in \(\Theta \)-notation? (no justification needed)

Continued on next page...
3 Loop Invariant

Consider the following algorithm: (it operates on an array A of length n of positive integers)

Algorithm 1

Require: A is an array of n positive integers

1: $x \leftarrow A[0]$

2: for $i \leftarrow 1, \ldots, n - 2$ do

3: $x \leftarrow x \cdot A[i]$

4: end for

5: return x

Consider the following loop invariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in Line 3 is executed) the following property holds:

$$x = \frac{A[0]}{A[i]}.$$

1. **Initialization:** Argue that at the beginning of the first iteration, i.e. when $i = 1$, the loop invariant holds.

2. **Maintenance:** Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop invariant then also holds at the beginning of iteration $i + 1$.

3. **Termination:** What does the algorithm compute? Argue that this follows from the loop invariant.