In-class Test
COMS10007 Algorithms 2019 /2020
Solutions

10.03.2020

Reminder: logn denotes the binary logarithm, i.e., logn = logyn. We also write logn as an
abbreviation for (logn)°.

Make sure to put your name on every piece of paper that you hand in!

1 O-notation

1. Let f: N — N be a function. Define the set O(f(n)).

O(f(n)) = {g(n) : There exist positive constants ¢ and ng
such that 0 < g(n) < c¢f(n) for all n > ng}

2. Give a formal proof of the statement:

2n? + 5n € O(n?) .

We need to show that there are positive constants ¢, ng such that 2n? 4+ 5n < ¢ - n?

holds, for every n > ng. This inequality is identical to 2n + 5 < cn or 5 < n(c — 2).
Chosing ¢ = 3, we obtain the condition 5 < n, which is true for every n > 5. We thus
select ng = 5.

3. For each of the following statements, indicate whether it is true of false: (no justification
needed)

(a) 10n € O(n'os™)
(b) log?n € O(n®)
(c) 3logn € O(y/logn) | false
(d) n! € O3 1,2 |false
e) 2vlglogn ¢ O(log? n)
) f(n) € ©(g(n)) implies g(n) € Q(f(n))
) f(n

f €O
(n) € O(g(n)) implies 2/ € O(29() | false

(
(f) f
(g) f

2 Sorting

1. What is the runtime of Insertionsort in ©-notation (our aim is to sort the input in in-

creasing order) on the following array of length n: (no justification needed)

Ali] =1,if 0 <i < |§], and A[i] = 0 otherwise

O(n?)

. Heapsort interprets an array of length n as a binary tree. What is the runtime of the

BuiLD-HEAP() operation that transforms the initial binary tree into a heap? (no justifi-
cation needed) |O(n)

. Suppose that Mergesort is executed on an array of length 2, for some integer k. What

is the height of the corresponding recursion tree of this execution in ©-notation? (no
justification needed) | ©(k)

3 Loop Invariant

Consider the following algorithm: (it operates on an array A of length n of positive integers)

Algorithm 1

Require: A is an array of n positive integers

Al0]

1: x(—m

2: fori<+1,....n—2do
3:
4
5

Ali]
Afi+1]

< -

: end for
: return z

Consider the following loop invariant:

At the beginning of iteration i (i.e., after ¢ is updated in Line 2 and before
the code in Line 3 is executed) the following property holds:

. Initialization: Argue that at the beginning of the first iteration, i.e. when ¢ = 1, the loop

invariant holds.

At the beginning of the first iteration, i.e., when ¢ = 1, the loop invariant states
® = %. Observe that in Line 1 of the algorithm, x is initialized to this value. The

loop invariant thus holds for 7 = 1.

. Maintenance: Suppose that the loop invariant holds at the beginning of iteration . Argue

that the loop invariant then also holds at the beginning of iteration ¢ + 1.

Let x; denote the value of = at the beginning of iteration 7. Since the loop invariant
holds at the beginning of iteration 4, we have x; = %. Observe that in iteration 4,

the value of x is updated in Line 3. We thus obtain:
Ali] Alo] Al A[0]

THLEIC UG T AR A+l Af+1]

The loop invariant thus holds at the beginning of iteration i + 1.

3. Termination: What does the algorithm compute? Argue that this follows from the loop
invariant.

The algorithm computes the value A’;[E]l] . Observe that the state at the end of iteration
n — 2 is identical to the state of a non-existing iteration n — 1. The loop-invariant thus

yields the value A‘[‘gﬂ]”.

