
In-class Test

COMS10007 Algorithms 2019/2020

Solutions

10.03.2020

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n. We also write logc n as an
abbreviation for (log n)c.

Make sure to put your name on every piece of paper that you hand in!

1 O-notation

1. Let f : N→ N be a function. Define the set O(f(n)).

O(f(n)) = {g(n) : There exist positive constants c and n0

such that 0 ≤ g(n) ≤ cf(n) for all n ≥ n0}

2. Give a formal proof of the statement:

2n2 + 5n ∈ O(n2) .

We need to show that there are positive constants c, n0 such that 2n2 + 5n ≤ c · n2

holds, for every n ≥ n0. This inequality is identical to 2n + 5 ≤ cn or 5 ≤ n(c − 2).
Chosing c = 3, we obtain the condition 5 ≤ n, which is true for every n ≥ 5. We thus
select n0 = 5.

3. For each of the following statements, indicate whether it is true of false: (no justification
needed)

(a) 10n ∈ O(nlogn) true

(b) log2 n ∈ O(n3) true

(c) 1
2 log n ∈ O(

√
log n) false

(d) n! ∈ O(
∑n

i=0 2i) false

(e) 2
√
log logn ∈ O(log2 n) true

(f) f(n) ∈ Θ(g(n)) implies g(n) ∈ Ω(f(n)) true

(g) f(n) ∈ O(g(n)) implies 2f(n) ∈ O(2g(n)) false

1



2 Sorting

1. What is the runtime of Insertionsort in Θ-notation (our aim is to sort the input in in-
creasing order) on the following array of length n: (no justification needed)

A[i] = 1, if 0 ≤ i ≤ bn2 c, and A[i] = 0 otherwise

Θ(n2)

2. Heapsort interprets an array of length n as a binary tree. What is the runtime of the
Build-Heap() operation that transforms the initial binary tree into a heap? (no justifi-

cation needed) Θ(n)

3. Suppose that Mergesort is executed on an array of length 2k, for some integer k. What
is the height of the corresponding recursion tree of this execution in Θ-notation? (no

justification needed) Θ(k)

3 Loop Invariant

Consider the following algorithm: (it operates on an array A of length n of positive integers)

Algorithm 1

Require: A is an array of n positive integers
1: x← A[0]

A[1]
2: for i← 1, . . . , n− 2 do
3: x← x · A[i]

A[i+1]
4: end for
5: return x

Consider the following loop invariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before
the code in Line 3 is executed) the following property holds:

x =
A[0]

A[i]
.

1. Initialization: Argue that at the beginning of the first iteration, i.e. when i = 1, the loop
invariant holds.

At the beginning of the first iteration, i.e., when i = 1, the loop invariant states
x = A[0]

A[1] . Observe that in Line 1 of the algorithm, x is initialized to this value. The
loop invariant thus holds for i = 1.

2. Maintenance: Suppose that the loop invariant holds at the beginning of iteration i. Argue
that the loop invariant then also holds at the beginning of iteration i + 1.

2



Let xi denote the value of x at the beginning of iteration i. Since the loop invariant
holds at the beginning of iteration i, we have xi = A[0]

A[i] . Observe that in iteration i,
the value of x is updated in Line 3. We thus obtain:

xi+1 = xi ·
A[i]

A[i + 1]
=

A[0]

A[i]
· A[i]

A[i + 1]
=

A[0]

A[i + 1]
.

The loop invariant thus holds at the beginning of iteration i + 1.

3. Termination: What does the algorithm compute? Argue that this follows from the loop
invariant.

The algorithm computes the value A[0]
A[n−1] . Observe that the state at the end of iteration

n−2 is identical to the state of a non-existing iteration n−1. The loop-invariant thus
yields the value A[0]

A[n−1] .

3


