In-class Test COMS10007 Algorithms 2019/2020 Solutions

10.03.2020

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$. We also write $\log^c n$ as an abbreviation for $(\log n)^c$.

Make sure to put your name on every piece of paper that you hand in!

1 *O*-notation

1. Let $f : \mathbb{N} \to \mathbb{N}$ be a function. Define the set O(f(n)).

 $O(f(n)) = \{g(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that $0 \le g(n) \le cf(n) \text{ for all } n \ge n_0\}$

2. Give a formal proof of the statement:

$$2n^2 + 5n \in O(n^2)$$
.

We need to show that there are positive constants c, n_0 such that $2n^2 + 5n \le c \cdot n^2$ holds, for every $n \ge n_0$. This inequality is identical to $2n + 5 \le cn$ or $5 \le n(c-2)$. Chosing c = 3, we obtain the condition $5 \le n$, which is true for every $n \ge 5$. We thus select $n_0 = 5$.

- 3. For each of the following statements, indicate whether it is true of false: (no justification needed)
 - (a) $10n \in O(n^{\log n})$ true
 - (b) $\log^2 n \in O(n^3)$ true
 - (c) $\frac{1}{2}\log n \in O(\sqrt{\log n})$ false
 - (d) $n! \in O(\sum_{i=0}^{n} 2^i)$ false
 - (e) $2^{\sqrt{\log \log n}} \in O(\log^2 n)$ true
 - (f) $f(n) \in \Theta(g(n))$ implies $g(n) \in \Omega(f(n))$ true
 - (g) $f(n) \in O(g(n))$ implies $2^{f(n)} \in O(2^{g(n)})$ false

2 Sorting

1. What is the runtime of Insertionsort in Θ -notation (our aim is to sort the input in increasing order) on the following array of length n: (no justification needed)

A[i] = 1, if $0 \le i \le \lfloor \frac{n}{2} \rfloor$, and A[i] = 0 otherwise

$\Theta(n^2)$

- 2. Heapsort interprets an array of length n as a binary tree. What is the runtime of the BUILD-HEAP() operation that transforms the initial binary tree into a heap? (no justification needed) $\Theta(n)$
- 3. Suppose that Mergesort is executed on an array of length 2^k , for some integer k. What is the height of the corresponding recursion tree of this execution in Θ -notation? (no justification needed) $\Theta(k)$

3 Loop Invariant

Consider the following algorithm: (it operates on an array A of length n of positive integers)

```
Algorithm 1

Require: A is an array of n positive integers

1: x \leftarrow \frac{A[0]}{A[1]}

2: for i \leftarrow 1, \dots, n-2 do

3: x \leftarrow x \cdot \frac{A[i]}{A[i+1]}

4: end for

5: return x
```

Consider the following loop invariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in Line 3 is executed) the following property holds: $x = \frac{A[0]}{A[i]} .$

1. Initialization: Argue that at the beginning of the first iteration, i.e. when i = 1, the loop invariant holds.

At the beginning of the first iteration, i.e., when i = 1, the loop invariant states $x = \frac{A[0]}{A[1]}$. Observe that in Line 1 of the algorithm, x is initialized to this value. The loop invariant thus holds for i = 1.

2. Maintenance: Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop invariant then also holds at the beginning of iteration i + 1.

Let x_i denote the value of x at the beginning of iteration i. Since the loop invariant holds at the beginning of iteration i, we have $x_i = \frac{A[0]}{A[i]}$. Observe that in iteration i, the value of x is updated in Line 3. We thus obtain:

$$x_{i+1} = x_i \cdot \frac{A[i]}{A[i+1]} = \frac{A[0]}{A[i]} \cdot \frac{A[i]}{A[i+1]} = \frac{A[0]}{A[i+1]}$$

The loop invariant thus holds at the beginning of iteration i + 1.

3. *Termination:* What does the algorithm compute? Argue that this follows from the loop invariant.

The algorithm computes the value $\frac{A[0]}{A[n-1]}$. Observe that the state at the end of iteration n-2 is identical to the state of a non-existing iteration n-1. The loop-invariant thus yields the value $\frac{A[0]}{A[n-1]}$.