Pole Cutting

Pole-cutting:
- Given is a pole of length n
- The pole can be cut into multiple pieces of integral lengths
- A pole of length i is sold for price $p(i)$, for some function p

Example:

<table>
<thead>
<tr>
<th>length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price $p(i)$</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

![Diagram of pole cutting](image)
Problem: **Pole-Cutting**

1. **Input:** Price table \(p_i \), for every \(i \geq 1 \), length \(n \) of initial pole
2. **Output:** Maximum revenue \(r_n \) obtainable by cutting pole into smaller pieces

How many ways of cutting the pole are there?

![Diagram of different ways to cut the pole]
There are 2^{n-1} ways to cut a pole of length n.

Proof.
There are $n - 1$ positions where the pole can be cut. For each position we either cut or we don’t. This gives 2^{n-1} possibilities.

Problem:
- Find best out of 2^{n-1} possibilities
- We could disregard similar cuts, but we would still have an exponential number of possibilities
- A fast algorithm cannot try out all possibilities
Notation

\[7 = 2 + 2 + 3 \]

means we cut a pole of length 7 into pieces of lengths 2, 2 and 3

Optimal Cut

- Suppose the optimal cut uses \(k \) pieces

\[n = i_1 + i_2 + \cdots + i_k \]

- Optimal revenue \(r_n \):

\[r_n = p(i_1) + p(i_2) + \cdots + p(i_k) \]
What are the optimal revenues r_i?

<table>
<thead>
<tr>
<th>length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price $p(i)$</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

$r_1 = 1 = 1$
$r_2 = 5 = 2$
$r_3 = 8 = 3$
$r_4 = 10 = 4 = 2 + 2$
$r_5 = 13 = 5 = 2 + 3$
$r_6 = 17 = 6$
$r_7 = 18 = 7 = 2 + 2 + 3$
$r_8 = 22 = 8 = 2 + 6$
$r_9 = 25 = 9 = 3 + 6$
$r_{10} = 30 = 10 = 10$
Optimal Substructure

Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k$$

for some k

Then:

$$n - i_1 = i_2 + \cdots + i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue r_n:

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \ldots, r_{n-1} + r_1\}$$

- p_n corresponds to the situation of no cut at all
- $r_i + r_{n-i}$: initial cut into two pieces of sizes i and $n - i$
Simpler Recursive Formulation: Let \(r_0 = 0 \)

\[
r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) .
\]

Observe: Only one subproblem in this formulation

Example: \(n = 4 \)

\[
r_n = \max\{p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0\}
\]
Recall:

\[r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) \text{ and } r_0 = 0. \]

Direct Implementation:

```plaintext
Require: Integer n, Array p of length n with prices
if n = 0 then
    return 0
q ← −∞
for i = 1 . . . n do
    q ← max{q, p[i] + CUT-POLE(p, n − i)}
return q
```

Algorithm CUT-POLE(p, n)

How efficient is this algorithm?
Recursion Tree for \textsc{Cut-Pole}

Example: \(n = 5\)

Number Recursive Calls: \(T(n)\)

\[
T(n) = 1 + \sum_{j=0}^{n-1} T(j) \quad \text{and} \quad T(0) = 1
\]
Solving Recurrence

How to Solve this Recurrence?

\[T(n) = 1 + \sum_{j=0}^{n-1} T(j) \text{ and } T(0) = 1 \]

- Substitution Method: Using guess \(T(n) = O(c^n) \), for some \(c \)
- Trick: compute \(T(n) - T(n - 1) \)

\[
T(n) - T(n - 1) = 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j) \right)
\]

\[
= T(n - 1) , \text{ hence:}
\]

\[
T(n) = 2T(n - 1).
\]

This implies \(T(i) = 2^i \).
Discussion

Runtime of Cut-Pole

- Recursion tree has 2^n nodes
- Each function call takes time $O(n)$ (for-loop)
- Runtime of \texttt{Cut-Pole} is therefore $O(n2^n)$. ($O(2^n)$ can also be argued)

What can we do better?

- Observe: We compute solutions to subproblems many times
- Avoid this by storing solutions to subproblems in a table!
- This is a key feature of dynamic programming
Implementing the Dynamic Programming Approach

Top-down with memoization
- When computing r_i, store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed

Bottom-up
- Fill table T from smallest to largest index
- No recursive calls are needed for this
Top-down Approach

Require: Integer n, Array p of length n with prices
Let $r[0 \ldots n]$ be a new array
for $i = 0 \ldots n$ do
 $r[i] \leftarrow -\infty$
return \texttt{Memoized-Cut-Pole-Aux}(p, n, r)

Algorithm \texttt{Memoized-Cut-Pole}(p, n)

- Prepare a table r of size n
- Initialize all elements of r with $-\infty$
- Actual work is done in \texttt{Memoized-Cut-Pole-Aux}, table r
 is passed on to \texttt{Memoized-Cut-Pole-Aux}
Top-down Approach (2)

Require: Integer \(n \), array \(p \) of length \(n \) with prices, array \(r \) of revenues

\[
\text{if } r[n] \geq 0 \text{ then} \\
\quad \text{return } r[n] \\
\text{if } n = 0 \text{ then} \\
\quad q \leftarrow 0 \\
\text{else} \\
\quad q \leftarrow -\infty \\
\quad \text{for } i = 1 \ldots n \text{ do} \\
\quad \quad q \leftarrow \max\{q, p[i] + \text{Memoized-Cut-Pole-Aux}(p, n - i, r)\} \\
\quad r[n] \leftarrow q \\
\text{return } q
\]

Algorithm \text{Memoized-Cut-Pole-Aux}(p, n, r)

Observe: If \(r[n] \geq 0 \) then \(r[n] \) has been computed previously
Require: Integer \(n \), array \(p \) of length \(n \) with prices

Let \(r[0 \ldots n] \) be a new array

\[
r[0] \leftarrow 0
\]

for \(j = 1 \ldots n \) do

\[
q \leftarrow -\infty
\]

for \(i = 1 \ldots j \) do

\[
q \leftarrow \max\{q, p[i] + r[j - i]\}
\]

\[
r[j] \leftarrow q
\]

return \(r[n] \)

Algorithm **BOTTOM-UP-CUT-POLE**(\(p, n \))

Runtime: Two nested for-loops

\[
\sum_{j=1}^{n} \sum_{i=1}^{j} O(1) = O(1) \sum_{j=1}^{n} \sum_{i=1}^{j} 1 = O(1) \sum_{j=1}^{n} j = O(1) \frac{n(n+1)}{2} = O(n^2).
\]
Conclusion

Runtime of Top-down Approach $O(n^2)$

(please think about this!)

Dynamic Programming

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table
- If a problem exhibits *optimal substructure* then dynamic programming is often the right choice
- Top-down and bottom-up approaches have the same runtime