Solving Recurrences I
COMS10007 2020, Lecture 13

Dr. John Lapinskas
(substituting for Dr. Christian Konrad)

March 16th 2020
Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the **divide-and-conquer** approach:

1. **Divide** the problem into smaller instances of the same problem.
2. **Conquer** the subproblems by solving them, either recursively or directly.
3. **Combine** the solutions to the subproblems into a solution for the original problem.

For example:
- Mergesort.
- Quicksort.
- The maximum subarray algorithm.
- Binary search.
- Fast-Peak-Finding.
Many algorithms in this course (and in general!) follow the \textit{divide-and-conquer} approach:

1. **Divide** the problem into smaller instances of the same problem.
2. **Conquer** the subproblems by solving them, either recursively or directly.
3. **Combine** the solutions to the subproblems into a solution for the original problem.

For example:
- Mergesort.
- Quicksort.
- The maximum subarray algorithm.
- Binary search.
- \texttt{Fast-Peak-Finding}.
Example: Merge sort

Recall: Merge Sort

1. Divide
 Split input array A of length n into subarrays $A_1 = A[0, \lfloor n/2 \rfloor]$ and $A_2 = A[\lceil n/2 \rceil + 1, n - 1]$
Example: Merge sort

Recall: Merge Sort

1. **Divide** $A \rightarrow A_1$ and A_2

2. **Conquer**
 Sort A_1 and A_2 recursively using the same algorithm

![Diagram showing the division and sorting process](image)

Runtime:
- $T(1) = O(1)$
- $T(n) = 2T(n/2) + O(n)$
Example: Merge sort

Recall: Merge Sort

1 Divide $A \rightarrow A_1$ and A_2

2 Conquer Solve A_1 and A_2

3 Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

\[
\begin{array}{cccccc}
2 & 3 & 7 & 7 & 8 & 9 & 12 & 15 \\
\end{array}
\]

\[
\begin{array}{cccc}
2 & 7 & 9 & 12 \\
\end{array} \quad \begin{array}{cccc}
3 & 7 & 8 & 15 \\
\end{array}
\]
Example: Merge sort

Recall: Merge Sort

1 Divide $A \rightarrow A_1$ and A_2

2 Conquer Solve A_1 and A_2

3 Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

![Diagram of array division and combination]

Runtime: (assuming that n is a power of 2)

$$T(1) = O(1)$$
$$T(n) = 2T(n/2) + O(n)$$
Recurrences

- Divide-and-conquer algorithms naturally lead to recurrences (or “recurrence relations”) like that one.
- How can we solve them? Or at least get a decent upper bound?

Methods for solving recurrences

- Recursion-tree method (as used for mergesort and max subarray). Often has too many awkward details (e.g. floors and ceilings, pivots), but great for getting intuition.
- Substitution method (this lecture). Very powerful, but needs a reasonable initial guess.
- The “Master Theorem”. Only applies to recurrences of the form $T(n) = aT(n/b) + f(n)$, but makes things trivial when it does apply. Not covered in this course.

Generally: use recursion-tree to get a guess for substitution!
How to solve recurrences?

Recurrences

- Divide-and-conquer algorithms naturally lead to recurrences (or “recurrence relations”) like that one.
- How can we solve them? Or at least get a decent upper bound?

Methods for solving recurrences

- Recursion-tree method (as used for mergesort and max subarray).
 Often has too many awkward details (e.g. floors and ceilings, pivots), but great for getting intuition.
- Substitution method (this lecture).
 Very powerful, but needs a reasonable initial guess.
- The “Master Theorem”.
 Only applies to recurrences of the form \(T(n) = aT(n/b) + f(n) \), but makes things trivial when it does apply. Not covered in this course.

Generally: use recursion-tree to get a guess for substitution!
The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

\[T(1) = O(1), \]
\[T(n) = 2T(n/2) + O(n). \]
The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

\[
T(1) = O(1),
\]
\[
T(n) = 2T(n/2) + O(n).
\]

Step 1: Replace the O-notation by constants.
The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

$$T(1) = O(1), \quad \rightarrow \quad T(n) \leq c_1 \quad \text{for all } n \leq n_0,$$

$$T(n) = 2T(n/2) + O(n). \quad T(n) \leq 2T(n/2) + c_2n \quad \text{for all } n > n_0.$$

Step 1: Replace the O-notation by constants. Remember, $f(n) \in O(g(n))$ means that there exist C and n_0 such that for all $n \geq n_0, f(n) \leq Cg(n)$.
The substitution method

The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when \(n\) is a power of two).

\[
\begin{align*}
T(1) &= O(1), & \quad \rightarrow \quad T(n) &\leq c_1 \quad \text{for all } n \leq n_0, \\
T(n) &= 2T(n/2) + O(n), & \quad T(n) &\leq 2T(n/2) + c_2 n \quad \text{for all } n > n_0.
\end{align*}
\]

Step 1: Replace the O-notation by constants. Remember, \(f(n) \in O(g(n))\) means that there exist \(C\) and \(n_0\) such that for all \(n \geq n_0\), \(f(n) \leq Cg(n)\).

For mergesort specifically, we can take \(n_0 = 1\).
The substitution method

1. Remove the O-notation from the recurrence.
2. Guess a partial form of the solution (with some unknown constants).
3. Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

\[
T(1) = O(1), \quad \Rightarrow \quad T(1) \leq c_1,
\]
\[
T(n) = 2T(n/2) + O(n). \quad T(n) \leq 2T(n/2) + c_2n \text{ for all } n > 1.
\]

Step 1: Replace the O-notation by constants. Remember, $f(n) \in O(g(n))$ means that there exist C and n_0 such that for all $n \geq n_0$, $f(n) \leq Cg(n)$.

For mergesort specifically, we can take $n_0 = 1$.
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 2: Guess a bound. Here, guess \(T(n) \leq Cn \log n \) for some \(C > 0 \).

Step 3: Prove it works by induction.

Base case \(n = 1 \): \(T(1) \leq c_1 \), and \(C \cdot 1 \log(1) = 0 > c_1 \).
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 2: Guess a bound. Here, guess \(T(n) \leq Cn \log n \) for some \(C > 0 \).

Step 3: Prove it works by induction.

Base case \(n = 1 \): \(T(1) \leq c_1 \), and \(C \cdot 1 \log(1) = 0 > c_1 \)... wait, no. :-(
The substitution method

\[
T(1) \leq c_1, \\
T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1.
\]

Step 2: Guess a bound. Here, guess \(T(n) \leq Cn \log n \) for some \(C > 0 \).

Step 3: Prove it works by induction.

Base case \(n = 1 \): \(T(1) \leq c_1 \), and \(C \cdot 1 \log(1) = 0 > c_1 \)...

Wait, no. :-(

But it’s fine! We’re only trying to prove \(T(n) = O(n \log n) \), which means we need \(T(n) \leq Cn \log n \) for all \(n \geq n_0 \) (for some \(C, n_0 \) of our choice).

We **don’t** need \(T(1) \leq C \cdot 1 \log 1 \). We can just take \(n_0 = 2 \).

Key point: Since we’re only going for asymptotic results, not exact results, we can choose any base case we want.
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Note that we haven’t fixed a value for \(C \) yet — we’ll see what values work over the course of the proof.
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

\[\text{Step 3: Prove by induction that } T(n) \leq Cn \log n \text{ for all } n \geq 2. \]

Note that we haven’t fixed a value for \(C \) yet — we’ll see what values work over the course of the proof.

Base case \(n = 2 \): We have

\[T(2) \leq 2T(1) + c_2 \cdot 2 \leq 2(c_1 + c_2). \]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Note that we haven’t fixed a value for \(C \) yet — we’ll see what values work over the course of the proof.

Base case \(n = 2 \): We have

\[T(2) \leq 2T(1) + c_2 \cdot 2 \leq 2(c_1 + c_2), \]
\[C \cdot 2 \log 2 = 2C. \]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

\textbf{Step 3:} Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Note that we haven’t fixed a value for \(C \) yet — we’ll see what values work over the course of the proof.

\textbf{Base case } \(n = 2 \): We have

\[T(2) \leq 2T(1) + c_2 \cdot 2 \leq 2(c_1 + c_2), \]
\[C \cdot 2 \log 2 = 2C. \]

So \(T(2) \leq C \cdot 2 \log 2 \) as long as we choose \(C \geq c_1 + c_2. \) \(\checkmark \)
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2n \quad \text{for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \).
The substitution method

\[
T(1) \leq c_1, \\
T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1.
\]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \).

\[\checkmark\]

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' \). Then we must prove \(T(n) \leq Cn \log n \).
The substitution method

\[
T(1) \leq c_1, \\
T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1.
\]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \).

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' \). Then we must prove \(T(n) \leq Cn \log n \).

By the induction hypothesis,

\[
T(n) \leq 2T(n/2) + c_2 n
\]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \).

\[\text{Inductive step: Suppose that for all } 2 \leq n' < n, T(n') \leq Cn' \log n'. \]

Then we must prove \(T(n) \leq Cn \log n \).

By the induction hypothesis,

\[T(n) \leq 2T(n/2) + c_2n \leq 2C \cdot \frac{n}{2} \log(n/2) + c_2n \]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \). \(\checkmark \)

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' \).
Then we must prove \(T(n) \leq Cn \log n \).

By the induction hypothesis,

\[T(n) \leq 2T(n/2) + c_2 n \leq 2C \cdot \frac{n}{2} \log(n/2) + c_2 n \]
\[= Cn(\log(n) - 1) + c_2 n \]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) for all \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \).

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' \).
Then we must prove \(T(n) \leq Cn \log n \).

By the induction hypothesis,

\[T(n) \leq 2T(n/2) + c_2 n \leq 2C \cdot \frac{n}{2} \log(n/2) + c_2 n \]
\[= Cn(\log(n) - 1) + c_2 n = Cn \log(n) + (c_2 - C)n. \]
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Base case \(n = 2: \) Requires \(C \geq c_1 + c_2. \)

Inductive step: Suppose that for all \(2 \leq n' < n, \) \(T(n') \leq Cn' \log n'. \)
Then we must prove \(T(n) \leq Cn \log n. \)

By the induction hypothesis,

\[
T(n) \leq 2T(n/2) + c_2n \leq 2C \cdot \frac{n}{2} \log(n/2) + c_2n \\
= Cn(\log(n) - 1) + c_2n = Cn \log(n) + (c_2 - C)n.
\]

This is at most \(Cn \log n \) as long as we choose \(C \geq c_2. \)
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Base case \(n = 2: \) Requires \(C \geq c_1 + c_2. \) ✓

Inductive step: Requires \(C \geq c_2. \) ✓
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2n \quad \text{for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \) **for all** \(n \geq 2 \).

Base case \(n = 2 \): Requires \(C \geq c_1 + c_2 \). \(\checkmark \)

Inductive step: Requires \(C \geq c_2 \). \(\checkmark \)

So we have proved \(T(n) \leq (c_1 + c_2) \log n \) for all \(n \geq 2 \).

This implies \(T(n) = O(n \log n) \), as we were hoping.
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Base case \(n = 2: \) Requires \(C \geq c_1 + c_2. \)

Inductive step: Requires \(C \geq c_2. \)

So we have proved \(T(n) \leq (c_1 + c_2) \log n \text{ for all } n \geq 2. \)

This implies \(T(n) = O(n \log n) \), as we were hoping.

But what if \(n \) isn’t a power of 2?
The substitution method

\[T(1) \leq c_1, \]
\[T(n) \leq 2T(n/2) + c_2 n \text{ for all } n > 1. \]

Step 3: Prove by induction that \(T(n) \leq Cn \log n \text{ for all } n \geq 2. \)

Base case \(n = 2: \) Requires \(C \geq c_1 + c_2. \) ✓

Inductive step: Requires \(C \geq c_2. \) ✓

So we have proved \(T(n) \leq (c_1 + c_2) \log n \text{ for all } n \geq 2. \)

This implies \(T(n) = O(n \log n), \) as we were hoping.

But what if \(n \) isn’t a power of 2?

For a back-of-the-envelope calculation, we’d just say \(T(n) \leq T(N) \) where \(N \) is the nearest power of two. But sometimes this might be false...
Dealing with floors and ceilings

The “real” recurrence for mergesort is

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \]
for all \(n \geq 2. \)

To deal with floors and ceilings, our guess needs an additive term. Let’s try to find \(C \) and \(a \) such that \(T(n) \leq Cn \log(n) + a \) for all \(n \geq 2. \)
Dealing with floors and ceilings

The “real” recurrence for mergesort is

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \quad \text{for all } n \geq 2. \]

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find \(C \) and \(a \) such that \(T(n) \leq Cn \log(n) + a \) for all \(n \geq 2. \)

Base case \(n = 2: \)

As before, \(T(2) \leq 2T(1) + 2c_2 \leq 2(c_1 + c_2). \)
Dealing with floors and ceilings

The “real” recurrence for mergesort is

\[
T(1) \leq c_1, \\
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2.
\]

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find \(C \) and \(a \) such that \(T(n) \leq C n \log(n) + a \) for all \(n \geq 2 \).

Base case \(n = 2 \):

As before, \(T(2) \leq 2 T(1) + 2c_2 \leq 2(c_1 + c_2) \).
Also, we have \(C \cdot 2 \log(2) + a = 2C + a \).
The “real” recurrence for mergesort is

\[
T(1) \leq c_1, \\
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2.
\]

To deal with floors and ceilings, our guess needs an additive term. Let’s try to find \(C \) and \(a \) such that \(T(n) \leq Cn \log(n) + a \) for all \(n \geq 2 \).

Base case \(n = 2 \):

As before, \(T(2) \leq 2T(1) + 2c_2 \leq 2(c_1 + c_2) \).

Also, we have \(C \cdot 2 \log(2) + a = 2C + a \).

So the base case works whenever \(2C + a \geq 2(c_1 + c_2) \). \(\checkmark \)
Dealing with floors and ceilings

\[T(1) \leq c_1, \]

\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \]

for all \(n \geq 2 \).

Goal: Prove by induction that for all \(n \geq 2 \), \(T(n) \leq Cn \log(n) + a \).

Base case \(n = 2 \): Requires \(2C + a \geq 2(c_1 + c_2) \). √
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2, \) \(T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \)

Inductive step: Suppose that for all \(2 \leq n' < n, \) \(T(n') \leq Cn' \log n' + a. \)

Then we must prove \(T(n) \leq Cn \log n + a. \)
Dealing with floors and ceilings

\begin{align*}
T(1) & \leq c_1, \\
T(n) & \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2.
\end{align*}

Goal: Prove by induction that for all $n \geq 2$, $T(n) \leq Cn \log(n) + a$.

Base case $n = 2$: Requires $2C + a \geq 2(c_1 + c_2)$. \checkmark

Inductive step: Suppose that for all $2 \leq n' < n$, $T(n') \leq Cn' \log n' + a$. Then we must prove $T(n) \leq Cn \log n + a$. We have

\begin{align*}
T(n) & \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \\
& \leq C \left(\left\lfloor \frac{n}{2} \right\rfloor \log(\lfloor n/2 \rfloor) + \left\lceil \frac{n}{2} \right\rceil \log(\lceil n/2 \rceil) \right) + 2a + c_2 n.
\end{align*}
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2, T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \) \(\checkmark \)

Inductive step: Suppose that for all \(2 \leq n' < n, T(n') \leq Cn' \log n' + a. \) Then we must prove \(T(n) \leq Cn \log n + a. \) We have

\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \]
\[\leq C \left(\left\lfloor \frac{n}{2} \right\rfloor \log(\lfloor n/2 \rfloor) + \left\lceil \frac{n}{2} \right\rceil \log(\lceil n/2 \rceil) \right) + 2a + c_2 n. \]

To deal with floors and ceilings, we normally use these bounds:

\(\lfloor x \rfloor \leq x \text{ for all } x \in \mathbb{R}, \quad \lceil x \rceil \leq x + 1 \text{ for all } x \in \mathbb{R}, \quad \lfloor x \rfloor \leq 2x \text{ for all } x \geq 1. \)
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2, \) \(T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \) \(\checkmark \)

Inductive step: Suppose that for all \(2 \leq n' < n, \) \(T(n') \leq Cn' \log n' + a. \) Then we must prove \(T(n) \leq Cn \log n + a. \) We have

\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \]
\[\leq C\left(\lfloor \frac{n}{2} \rfloor \log(\lfloor n/2 \rfloor) + \lceil \frac{n}{2} \rceil \log(\lceil n/2 \rceil) \right) + 2a + c_2 n. \]

To deal with floors and ceilings, we normally use these bounds:

\[\lfloor x \rfloor \leq x \text{ for all } x \in \mathbb{R}, \quad \lceil x \rceil \leq x + 1 \text{ for all } x \in \mathbb{R}, \quad \lceil x \rceil \leq 2x \text{ for all } x \geq 1. \]

Using the “right” bounds in the “right” expressions:

\[T(n) \leq C\left(\frac{n}{2} \log(n/2) + \left(\frac{n}{2} + 1 \right) \log(n) \right) + 2a + c_2 n. \]
Dealing with floors and ceilings

\[
T(1) \leq c_1,
\]
\[
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2.
\]

Goal: Prove by induction that for all \(n \geq 2 \), \(T(n) \leq Cn \log(n) + a \).

Base case \(n = 2 \): Requires \(2C + a \geq 2(c_1 + c_2) \). \(\checkmark \)

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' + a \). Then we must prove \(T(n) \leq Cn \log n + a \). We showed

\[
T(n) \leq C \left(\frac{n}{2} \log(n/2) + \left(\frac{n}{2} + 1 \right) \log(n) \right) + 2a + c_2 n.
\]
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2 \), \(T(n) \leq Cn \log(n) + a \).

Base case \(n = 2 \): Requires \(2C + a \geq 2(c_1 + c_2) \). √

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq Cn' \log n' + a \).

Then we must prove \(T(n) \leq Cn \log n + a \). We showed

\[T(n) \leq C \left(\frac{n}{2} \log(n/2) + \left(\frac{n}{2} + 1 \right) \log(n) \right) + 2a + c_2 n. \]

We also bound \(\log(n/2) \leq \log(n) \) to make the algebra a bit easier.
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2 \), \(T(n) \leq C n \log(n) + a \).

Base case \(n = 2 \): Requires \(2C + a \geq 2(c_1 + c_2) \). \(\checkmark \)

Inductive step: Suppose that for all \(2 \leq n' < n \), \(T(n') \leq C n' \log n' + a \).

Then we must prove \(T(n) \leq C n \log n + a \). We showed

\[T(n) \leq C \left(\frac{n}{2} \log(n) + \left(\frac{n}{2} + 1 \right) \log(n) \right) + 2a + c_2 n. \]

We also bound \(\log(n/2) \leq \log(n) \) to make the algebra a bit easier.
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \] for all \(n \geq 2. \)

Goal: Prove by induction that for all \(n \geq 2, \) \(T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \)

Inductive step: Suppose that for all \(2 \leq n' < n, \) \(T(n') \leq Cn' \log n' + a. \)

Then we must prove \(T(n) \leq Cn \log n + a. \) We showed

\[T(n) \leq C \left(\frac{n}{2} \log(n) + \left(\frac{n}{2} + 1 \right) \log(n) \right) + 2a + c_2 n. \]

We also bound \(\log(n/2) \leq \log(n) \) to make the algebra a bit easier.

Then rearranging gives:

\[T(n) \leq Cn \log(n) + \log(n) + 2a + c_2 n \]

This is at most \(Cn \log(n) \) as long as we take \(a \leq -(\log(n) + c_2 n)/2. \)
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \quad \text{for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2, T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \) ✓

Inductive step: Requires \(a \leq -(\log(n) + c_2 n)/2. \) ✓

So all that’s left is to pick \(C \) and \(a \) that work.
Dealing with floors and ceilings

\[
T(1) \leq c_1, \\
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2.
\]

Goal: Prove by induction that for all \(n \geq 2, \ T(n) \leq Cn \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \) ✓

Inductive step: Requires \(a \leq -(\log(n) + c_2 n)/2. \) ✓

So all that’s left is to pick \(C \) and \(a \) that work.

If we take \(a(n) = -(\log(n) + c_2 n)/2, \) then the inductive step works and \(a(2) = -\frac{1}{2} - c_2. \)
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

Goal: Prove by induction that for all \(n \geq 2, \ T(n) \leq C n \log(n) + a. \)

Base case \(n = 2: \) Requires \(2C + a \geq 2(c_1 + c_2). \) ✓

Inductive step: Requires \(a \leq -(\log(n) + c_2 n)/2. \) ✓

So all that’s left is to pick \(C \) and \(a \) that work.

If we take \(a(n) = -(\log(n) + c_2 n)/2, \) then the inductive step works and \(a(2) = -\frac{1}{2} - c_2. \)

So to make the base case work, we take

\[C = c_1 + c_2 - \frac{a}{2} = c_1 + \frac{3}{2} c_2 + \frac{1}{4} > 0. \]

(Note we do need \(C > 0 \) here!)
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

We proved: Let \(C = c_1 + \frac{3}{2} c_2 + \frac{1}{4} \), and let \(a(n) = -\frac{1}{2} (c_2 n + \log(n)) \). Then \(T(n) \leq C n \log(n) + a(n) \text{ for all } n \geq 2. \) □
Dealing with floors and ceilings

\[T(1) \leq c_1, \]
\[T(n) \leq T([n/2]) + T(\lceil n/2 \rceil) + c_2 n \text{ for all } n \geq 2. \]

We proved: Let \(C = c_1 + \frac{3}{2} c_2 + \frac{1}{4}, \) and let \(a(n) = -\frac{1}{2}(c_2 n + \log(n)). \)

Then \(T(n) \leq C n \log(n) + a(n) \text{ for all } n \geq 2. \)

In particular, this implies \(T(n) = O(n \log n) \) as before. Phew!

Note we proved something **stronger** than \(T(n) \leq C n \log(n) \) for all \(n \geq 2. \)

And yet, if we’d tried the proof with \(a(n) = 0, \) it wouldn’t have worked!

It’s counterintuitive, but if you’re having trouble with an induction, strengthening your inductive hypothesis can be very helpful.
Next time: More examples!
(Lecture to be given online...)