In-class Test:

- When? March 10th, 1pm (during exercise classes)
- Where? Ivy Gate G.01 and Ivy Gate 1.01, two groups

Your timetables have been updated accordingly!

- How long? 50 mins
- What should I expect? All lectures and exercise sheets are relevant (Peak Finding is excluded). Example in-class test uploaded to unit webpage
- You are allowed extra time? Get in touch with me (email)
Sorting Algorithms seen so far

- Insertion-Sort: $O(n^2)$ in worst, in place, stable
- Merge-Sort: $O(n \log n)$ in worst case, NOT in place, stable

Heap Sort (best of the two)
- $O(n \log n)$ in worst case, in place, NOT stable
- Uses a heap data structure (a heap is special tree)

Data Structures
- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms
- For example, an array is a data structure
Definition: A tree \(T = (V, E) \) of size \(n \) is a tuple consisting of

\[
V = \{v_1, v_2, \ldots, v_n\} \quad \text{and} \quad E = \{e_1, e_2, \ldots, e_{n-1}\}
\]

with \(|V| = n \) and \(|E| = n - 1 \) with \(e_i = \{v_j, v_k\} \) for some \(j \neq k \) s.t. for every pair of vertices \(v_i, v_j \) \((i \neq j) \), there is a path from \(v_i \) to \(v_j \). \(V \) are the nodes/vertices and \(E \) are the edges of \(T \).
Definition: (rooted tree) A *rooted* tree is a triple $T = (v, V, E)$ such that $T = (V, E)$ is a tree and $v \in V$ is a designed node that we call the *root* of T.

Definition: (leaf, internal node) A *leaf* in a tree is a node with exactly one incident edge. A node that is not a leaf is called an *internal node*.
Further Definitions:

- The **parent** of a node \(v \) is the closest node on a path from \(v \) to the root. The root does not have a parent.

- The **children** of a node \(v \) are \(v \)'s neighbors except its parent.

- The **height** of a tree is the length of a longest root-to-leaf path.

- The **degree** \(\deg(v) \) of a node \(v \) is the number of incident edges to \(v \). Since every edge is incident to two vertices we have
 \[
 \sum_{v \in V} \deg(v) = 2 \cdot |E| = 2(n - 1) .
 \]

- The **level** of a vertex \(v \) is the length of the unique path from the root to \(v \) plus 1.
Property: Every tree has at least 2 leaves

Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$\sum_{v \in V} \deg(v) = \sum_{v \in L} \deg(v) + \sum_{v \in V \setminus L} \deg(v)$$

$$\geq |L| \cdot 1 + (|V| - |L|) \cdot 2 = 2|V| - |L| \geq 2n - 1,$$

a contradiction to the fact that $\sum_{v \in V} \deg(v) = 2(n - 1)$ in every tree.
Definition:
(k-ary tree) A (rooted) tree is *k-ary* if every node has at most *k* children. If *k* = 2 then the tree is called binary. A *k*-ary tree is

- *full* if every internal node has exactly *k* children,
- *complete* if all levels except possibly the last is entirely filled (and last level is filled from left to right),
- *perfect* if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree
Height of Perfect and Complete \(k \)-ary Trees

Height of \(k \)-ary Trees

- The number of nodes in a perfect \(k \)-ary tree of height \(i - 1 \) is
 \[
 \sum_{j=0}^{i-1} k^j = \frac{k^i - 1}{k - 1}.
 \]

- In other words, a perfect \(k \)-ary tree on \(n \) nodes has height:
 \[
 n = \frac{k^i - 1}{k - 1}
 \]
 \[
 k^i = n(k - 1) + 1
 \]
 \[
 i = \log_k(n(k - 1) + 1) = O(\log_k n).
 \]

- Similarly, a complete \(k \)-ary tree has height \(O(\log_k n) \).

Remark: The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.
Priority Queues

Priority Queue:
Data structure that allows the following operations:
- Build(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure
- others...

Sorting using a Priority Queue

14 3 9 8 16 2 1 7 11 12 5

Data Structure

Algorithm

extract-Max
max
Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11
14 3 9 8 16 2 1 7 11 12 5

Easy Navigation:

- Parent of i: $\lfloor i/2 \rfloor$
- Left/Right Child of i: $2i$ and $2i + 1$
The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify(.)**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: `Heapify()`
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: *Heapify()*
Heapify()
Let p be the key of a node and let c_1, c_2 be the keys of its children
- Let $c = \max\{c_1, c_2\}$
- If $c > p$ then exchange nodes with keys p and c
- call Heapify() at node with key c

Runtime:
- Exchanging nodes requires time $O(1)$
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of Heapify: $O(\log n)$.

Constructing a Heap: Build(.) Runtime $O(n \log n)$
More Precise Analysis of the Heap Construction Step

- **Heapify(x):** $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- \textbf{Observe:} Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

- Heapify(x): \(O(\text{depth of subtree rooted at } x) = O(\log n) \)
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let \(i \) be the largest integer such that \(n' := 2^i - 1 \) and \(n' < n \)
- There are at most \(n' \) internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height \(i - 1 \)
Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

\[
\sum_{j=1}^{i} \frac{2^{i-j}}{j} \cdot j = O(2^i) = O(n') = O(n).
\]

We proved \(\sum_{j=1}^{i} \frac{j}{2^j} = O(1) \) in Lecture 4!

Dr. Christian Konrad
Lectures 8 and 9: Trees and Heap Sort
Putting Everything Together

1. **Build-heap()**
2. **Repeat** \(n \) **times:**
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

```
14 3 9 8 16 2 1 7 11 12 5
```
Putting Everything Together

1. Build-heap()

2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()

2. Repeat \(n \) times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat \(n \) times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat n times:
 a. Swap root with last element
 b. Decrease size of heap by 1
 c. Heapify(root)
Putting Everything Together

1. **Build-heap()**
2. **Repeat** n **times:**
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat \(n \) times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. **Build-heap()** \(O(n) \)
2. Repeat \(n \) times:
 1. Swap root with last element \(O(1) \)
 2. Decrease size of heap by 1 \(O(1) \)
 3. Heapify(root) \(O(\log n) \)

Runtime: \(O(n \log n) \)
Heapsort is Not Stable

Example:
1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 1 1

1

1

1 1

Dr. Christian Konrad
Lectures 8 and 9: Trees and Heap Sort
Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
Are all Functions Asymptotically Comparable?

Let \(f, g \) be positive functions. Is the following statement true?

Claim. \(f(n) \not\in O(g(n)) \Rightarrow g(n) \in O(f(n)) \). **false!**
Are all Functions Asymptotically Comparable? (2)

\[f(n) = n \] and \[g(n) = n^{1+0.1}\sin(n) \]

Not all Functions are asymptotically comparable!

- Observe that \(n^{1+0.1}\sin(n) \) is infinitely often equal to \(n^{1.1} \) and infinitely often equal to \(n^{0.9} \)
- Therefore, neither \(f(n) \in O(g(n)) \) nor \(g(n) \in O(f(n)) \)

Another Example:

- \(f(n) = n \)
- \(g(n) = n^2 \) if \(n \) even and \(g(n) = \sqrt{n} \) if \(n \) odd