GO China: STEM Futures

Join this 4-week summer school at the Beijing Institute of Technology in July 2020.

Choose from 3 course options:

• Big Data Analysis
• Exploring Vehicle Design
• 5G Technology and Applications

Bursaries available for eligible students

Info session: Wednesday 5th February 2pm, Senate House 5.10
Application deadline: Wednesday 12th February

Find out more: bristol.ac.uk/summer-abroad
Algorithms?

A procedure that solves a *computational problem*

Computational Problem?

- Sort an array of \(n \) numbers
- How often does “Juliet” appear in Shakespeare’s “Romeo And Juliet”?
- How do we factorize a large number?
- Shortest/fastest way to travel from Bristol to Glasgow?
- How to execute a database query?
- Is it possible to partition the set \(\{17, 8, 4, 22, 9, 28, 2\} \) into two sets s.t. their sums are equal? \(\{8, 9, 28\}, \{2, 4, 17, 22\} \)
What we want and how we work

Efficiency

- The faster the better: Runtime analysis
- Use as little memory as possible: Space complexity

Mathematics

- We will prove that algorithms run fast and use little memory
- We will prove that algorithms are correct
- **Tools:** Induction, algebra, sums, ..., rigorous arguments

Theoretical Computer Science

No implementations in this unit!
What you get out of this unit

Goals

- First steps towards becoming an algorithms designer
- Learn techniques that help you design & analyze algorithms
- Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

- Study a problem at hand, discover structure within problem, exploit structure and design algorithms
- Useful in all areas of Computer Science
- Interview questions, Google, Facebook, Amazon, etc.
My Goals

- Get you excited about Algorithms
- Shape new generation of Algorithm Designers at Bristol

Algorithms in Bristol

- 1st year: Algorithms (Algorithms 1)
- 2nd year: Data Structures and Algorithms (Algorithms 2)
- 3rd year: Advanced Algorithms (Algorithms 3)
- 4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars
Unit Structure

Teaching Units
- Lectures: Mondays 2-3pm, Wednesdays 10-11am, PUGSLEY, Instructor: Dr. Christian Konrad
- Exercise classes/in-class tests: Tuesdays 1pm-2pm (A-L) and 2pm-3pm (M-Z), Room MVB 1.11

Assessment
- Exam: Counts 90%
- One In-class test: Counts 10% (Extra time? let me know as soon as possible)
- You pass the unit if your final grade is at least 40%
Teaching Staff

- Unit Director: Christian Konrad
- TAs: Lidiya Binti Khalil, Emil Centiu, Igor Dolecki, Daniel Jones, Joseph MacManus, Mutalib Mohammed, Yuhang Ming, Kar Hor Yap

Optional Drop-in Session

- Thursdays 10-11am, MVB 4.01
- OPTIONAL!

My Office Hours Wednesdays 1-2pm in MVB 3.06
How to Succeed in this Unit

How to succeed

- Make sure you understand the material
- **Work on provided exercises!**
- Come to our drop in sessions
- **Work on provided exercises!!**
- Piazza for discussions and questions
- **Work on provided exercises!!!**
- Come to my office hours

Unit webpage

- News, announcements
- Download slides, exercises, etc.
Let \(A = a_0, a_1, \ldots, a_{n-1} \) be an array of integers of length \(n \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(a_3)</td>
<td>(a_4)</td>
<td>(a_5)</td>
<td>(a_6)</td>
<td>(a_7)</td>
<td>(a_8)</td>
<td>(a_9)</td>
</tr>
</tbody>
</table>

Definition: (Peak)

Integer \(a_i \) is a peak if adjacent integers are not larger than \(a_i \)

Example:

| 4 | 3 | 9 | 10 | 14 | 8 | 7 | 2 | 2 | 2 |
Let $A = a_0, a_1, \ldots, a_{n-1}$ be an array of integers of length n

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9
\end{array}
\]

Definition: (Peak)
Integer a_i is a **peak** if adjacent integers are not larger than a_i

Example:

\[
\begin{array}{cccccccccc}
4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2
\end{array}
\]
Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1. **Input**: An integer array of length n
2. **Output**: A position $0 \leq i \leq n - 1$ such that a_i is a peak

```cpp
int peak(int *A, int len) {
    if (A[0] >= A[1])
        return 0;
        return len - 1;
    for (int i = 1; i < len - 1; i = i + 1) {
            return i;
    }
    return -1;
}
```

C++ code
Problem **Peak Finding**: Write algorithm with properties:

1. **Input**: An integer array of length \(n \)
2. **Output**: A position \(0 \leq i \leq n - 1 \) such that \(a_i \) is a peak

```plaintext
Require: Integer array \( A \) of length \( n \\
if A[0] \geq A[1] \text{ then} \\
    return 0 \\
if A[n-1] \geq A[n-2] \text{ then} \\
    return n - 1 \\
for i = 1 \ldots n - 2 \text{ do} \\
    if A[i] \geq A[i-1] \text{ and } A[i] \geq A[i+1] \text{ then} \\
        return i \\
return -1
```

Pseudo code
Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_1 > a_0$ since otherwise a_0 is a peak. But then $a_2 > a_1$ since otherwise a_1 is a peak. Continuing, for the same reason, $a_i > a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1} > a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.
Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_1 > a_0$ since otherwise a_0 is a peak. But then $a_2 > a_1$ since otherwise a_1 is a peak. Continuing, for the same reason, $a_i > a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n - 1$. But this implies $a_{n-1} > a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.
Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let \(A \) be an integer array of length \(n \). Suppose for the sake of a contradiction that \(A \) does not have a peak. Then \(a_1 > a_0 \) since otherwise \(a_0 \) is a peak. But then \(a_2 > a_1 \) since otherwise \(a_1 \) is a peak. Continuing, for the same reason, \(a_i > a_{i-1} \) since otherwise \(a_{i-1} \) is a peak, for every \(i \leq n - 1 \). But this implies \(a_{n-1} > a_{n-2} \) and hence \(a_{n-1} \) is a peak. A contradiction. Hence, every array has a peak.
Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_1 > a_0$ since otherwise a_0 is a peak. But then $a_2 > a_1$ since otherwise a_1 is a peak. Continuing, for the same reason, $a_i > a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1} > a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
a_0 & > & a_0 & > & a_1 & > & a_2 & > & a_3 & > & a_4 & > & a_5 \\
\end{array}
\]
Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)
How fast is our Algorithm?

```plaintext
Require: Integer array $A$ of length $n$

if $A[0] \geq A[1]$ then
    return 0
if $A[n-1] \geq A[n-2]$ then
    return $n-1$
for $i = 1 \ldots n-2$ do
    if $A[i] \geq A[i-1]$ and $A[i] \geq A[i+1]$ then
        return $i$
return $-1$
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice
- Overall: $2 + 2 + (n-2) \cdot 4 = 4(n-1)$

Can we do better?!
Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding

1. if A is of length 1 then return 0
2. if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
3. if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
4. Otherwise, if $A[\lfloor n/2 \rfloor - 1] \geq A[\lfloor n/2 \rfloor]$ then return Fast-Peak-Finding($A[0, \lfloor n/2 \rfloor - 1]$)
5. else return $\lfloor n/2 \rfloor + 1 +$ Fast-Peak-Finding($A[\lfloor n/2 \rfloor + 1, n - 1]$)

Comments:
- Fast-Peak-Finding is recursive (it calls itself)
- $\lfloor x \rfloor$ is the floor function ($\lceil x \rceil$: ceiling)
Example:

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>22</td>
<td>47</td>
<td>36</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>25</td>
<td>21</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Example:

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 16/2 \rfloor] = A[8]$ is a peak
Example:

If $A[7] \geq A[8]$ then return \textsc{Fast-Peak-Finding}(A[0, 7])
Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>22</td>
<td>47</td>
<td>36</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>25</td>
<td>21</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>22</td>
</tr>
</tbody>
</table>

Length of subarray is 8
Example:

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\end{array}
\]

Check whether \(A[\lfloor n/2 \rfloor] = A[\lfloor 8/2 \rfloor] = A[4] \) is a peak
Example:

Example:

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
3 & 7 & 22 & 47 & 36 & 33 & 31 & 30 & 25 & 21 & 20 & 15 & 7 & 4 & 10 & 22 \\
\end{array}
\]

Length of subarray is 4
Example:

\[
\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
3 & 7 & 22 & 47 & 36 & 33 & 31 & 30 & 25 & 21 & 20 & 15 & 7 & 4 & 10 & 22 \\
\end{array}
\]

Check whether \(A[\lfloor n/2 \rfloor] = A[\lfloor 4/2 \rfloor] = A[2] \) is a peak
Example:

If \(A[1] \geq A[2] \) then return \texttt{FAST-PEAK-FINDING}(A[0, 1])
Example:

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>22</td>
<td>47</td>
<td>36</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>25</td>
<td>21</td>
<td>20</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

Else return \texttt{Fast-Peak-Finding(A[3])}, which returns 3
How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times.
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
R(1) = R(2) = 1 \\
R(n) \leq R(\lfloor n/2 \rfloor) + 1, \text{ for } n \geq 3.
$$

- Solving the recurrence (see lecture on recurrences):

$$
R(n) \leq R(\lfloor n/2 \rfloor) + 1 \leq R(n/2) + 1 = R(\lfloor n/4 \rfloor) + 2 \\
\leq R(n/4) + 2 = \cdots \leq \lceil \log n \rceil.
$$

- Hence, we look at most at $5\lceil \log n \rceil$ array elements!
Peak Finding: Correctness

Why is the Algorithm correct?!

1. if A is of length 1 then return 0
2. if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
3. if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
4. Otherwise, if $A[\lfloor n/2 \rfloor - 1] \geq A[\lfloor n/2 \rfloor]$ then return $\text{FAST-Peak-Finding}(A[0, \lfloor n/2 \rfloor - 1])$
5. else return $\lceil n/2 \rceil + 1 + \text{FAST-Peak-Finding}(A[\lfloor n/2 \rfloor + 1, n - 1])$

Steps 1,2,3 are clearly correct

Why is step 4 correct? (step 5 is similar)
- Need to prove: peak in $A[0, \lfloor n/2 \rfloor - 1]$ is a peak in A
- Critical case: $\lfloor n/2 \rfloor - 1$ is a peak in $A[0, \lfloor n/2 \rfloor - 1]$
- Condition in step 4 guarantees $A[\lfloor n/2 \rfloor - 1] \geq A[\lfloor n/2 \rfloor]$ and hence $\lfloor n/2 \rfloor - 1$ is a peak in A as well (very important!)
Peak Finding: Runtime Comparison

$4(n - 1)$ versus $5 \log n$

![Graph showing the comparison between Fast-Peak-Finding: $5 \log(n)$ and Slow Peak Finding: $4(n-1)$ with respect to the number of accesses to the array.](image)

Conclusion: $5 \log n$ is so much better than $4(n - 1)$!
Peak Finding: Runtime Comparison

$4(n - 1)$ \textbf{versus} $5 \log n$

![Graph showing runtime comparison between $4(n - 1)$ and $5 \log n$](image)

Conclusion: $5 \log n$ is so much better than $4(n - 1)$!
4(n - 1) \textbf{versus} 5 \log n

Conclusion: 5 \log n is so much better than 4(n - 1)!
Peak Finding: Runtime Comparison

\[4(n - 1) \text{ versus } 5 \log n \]

Conclusion: \(5 \log n \) is so much better than \(4(n - 1)! \)