
Exercise Sheet 1

COMS10007 Algorithms 2018/2019

05.02.2019

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 O-notation

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. n2 ∈ O(n3) .

2. 2n2

logn ∈ O(n2

log logn) . (log log n is short for log(log n))

3. 2
√
logn ∈ O(n) .

4. Prove the following statements from the lecture:

(a) f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

(b) f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Remind yourself why these statements could be useful for the analysis of algorithms.

5. Given are the functions:

f1 = 2
√
n, f2 = log2(20n), f3 = n!, f4 =

1

2
n2/ log(n), f5 = 4 log2(n), f6 = 2

√
logn .

Relabel the functions such that fi ∈ O(fi+1) (no need to give any proofs here).

2 Θ and Ω

1. Let c > 1 be a constant. Prove or disprove the following statements:

(a) logc n ∈ Θ(log n).

(b) log(nc) ∈ Θ(log n).

2. Let c > 2 be a constant. Prove or disprove the following statement:

2n ∈ Θ(cn) .

3. Prove that the following two statements are equivalent:

(a) f ∈ Θ(g) .

1

(b) f ∈ O(g) and g ∈ O(f) .

4. Prove that the following two statements are equivalent:

(a) f ∈ Ω(g) .

(b) g ∈ O(f) .

3 Peak Finding in 2D

In the lecture we discussed a recursive algorithm for PeakFinding. Below is an algorithm that
finds a peak in two dimensions. Your task is to analyze this algorithm, by bounding its runtime
and proving its correctness. As in the lecture, the runtime of the algorithm is defined as the
number of accesses to the input matrix.

Let A be an n-by-n matrix of integers. A peak in A is a position (i, j) such that Ai,j is
at least as large as its (at most) 4 neighbors (above, below, left, and right). The algorithm is
defined for non-square matrices. It is recursive and proceeds as follows:

Require: n-by-m matrix A of integers
Suppose that the number of columns is larger than the number of rows, i.e., n ≥ m.
If this is not the case then consider AT (i.e., rotate the matrix by 90◦) instead of A.
Observe that a peak in AT is also necessarily a peak in A.
if n ≤ 10 then

Compute the maximum of A and return its position
end if
Find the position of a maximum (imax, jmax) among the elements in the boundary (top
row, bottom row, first column, last column) and the most central column (column dn/2e).
if (imax, jmax) is a peak in A then
return (imax, jmax)

else
Let (i′, j′) be an adjacent element (either above, below, left, or right) of (imax, jmax)
such that Ai′,j′ > Aimax,jmax .
Ai′,j′ is necessarily contained in either the submatrix A1 consisting of the first dn/2e−1
columns or the submatrix A2 consisting of columns dn/2e+ 1, dn/2e+ 2 . . . n. Let As

be this submatrix (i.e., s ∈ {1, 2}).
return Find a peak in As recursively using this algorithm

end if

It is not required that you give formal proofs in this exercise. However, try to find a clear
argumentation.

1. Explain the algorithm in plain English.

2. Argue why the algorithm is correct, i.e., why is a peak found by the algorithm in the
submatrix As necessarily also a peak in A?

3. Bound the runtime of this algorithm using O-notation when executed on an n-by-n matrix.

2

