Throughout this paper log() denotes the binary logarithm, i.e, \(\log(n) = \log_2(n) \), and \(\ln() \) denotes the logarithm to base \(e \), i.e., \(\ln(n) = \log_e(n) \).

1 **O-notation**

1. Let \(f : \mathbb{N} \to \mathbb{N} \) be a function. Define the set \(\Theta(f(n)) \).

2. Give a formal proof of the statement:

 \[
 10\sqrt{n} \in O(n) .
 \]

3. Use the racetrack principle to prove the following statement:

 \[
 n \in O(2^n) .
 \]

 Hint: The following facts can be useful:
 - The derivative of \(2^n \) is \(\ln(2)2^n \).
 - \(\frac{1}{2} \leq \ln(2) \leq 1 \) holds.

2 **Sorting**

1. Why is Mergesort not an in-place sorting algorithm?

2. A divide-and-conquer algorithm consists of three parts: The divide, the conquer, and the combine phase. Compare Mergesort and Quicksort with regards to these three phases.

3. What is the runtime (in Big-O notation) of Insertionsort when executed on the following arrays of lengths \(n \): (no justification needed)

 (a) \(1, 2, 3, 4, \ldots, n - 1, n \)

 (b) \(n, n - 1, n - 2, \ldots, 2, 1 \)

3 **Loop-Invariant**

Consider the following algorithm:
The goal of this exercise is to show that this algorithm computes the value $2^n - 1$ on input n. Let x_i be the value of x at the beginning of iteration i (i.e., after i is updated in Line 2 and before Line 3 is executed). Consider the following loop invariant:

$$x_i = 2^i - 1$$

1. **Initialization:** Argue that at the beginning of the first iteration, i.e. when $i = 1$, the loop-invariant holds.

2. **Maintenance:** Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop-invariant then also holds at the beginning of iteration $i + 1$.

3. **Termination:** Use the loop invariant to conclude that the algorithm indeed computes the value $2^n - 1$ on input n.

4. What are the worst-case and best-case runtimes of the algorithm?