Mock In-class Test COMS10007 Algorithms 2018/2019

Throughout this paper log() denotes the binary logarithm, i.e, $\log(n) = \log_2(n)$, and ln() denotes the logarithm to base e, i.e., $\ln(n) = \log_e(n)$.

1 *O*-notation

- 1. Let $f : \mathbb{N} \to \mathbb{N}$ be a function. Define the set $\Theta(f(n))$.
- 2. Give a formal proof of the statement:

$$10\sqrt{n} \in O(n)$$
 .

3. Use the racetrack principle to prove the following statement:

$$n \in O(2^n)$$
.

Hint: The following facts can be useful:

- The derivative of 2^n is $\ln(2)2^n$.
- $\frac{1}{2} \leq \ln(2) \leq 1$ holds.

2 Sorting

- 1. Why is Mergesort not an in-place sorting algorithm?
- 2. A divide-and-conquer algorithm consists of three parts: The divide, the conquer, and the combine phase. Compare Mergesort and Quicksort with regards to these three phases.
- 3. What is the runtime (in Big-O notation) of Insertionsort when executed on the following arrays of lengths n: (no justification needed)
 - (a) $1, 2, 3, 4, \ldots, n-1, n$
 - (b) $n, n-1, n-2, \dots, 2, 1$

3 Loop-Invariant

Consider the following algorithm:

Algorithm 1Require: integer $n \ge 1$ 1: $x \leftarrow 1$ 2: for $i \leftarrow 1, \dots, n-1$ do3: $x \leftarrow 2 \cdot x + 1$ 4: end for5: return x

The goal of this exercise is to show that this algorithm computes the value $2^n - 1$ on input n. Let x_i be the value of x at the beginning of iteration i (i.e., after i is updated in Line 2 and before Line 3 is executed). Consider the following loop invariant:

 $x_i = 2^i - 1$

- 1. Initialization: Argue that at the beginning of the first iteration, i.e. when i = 1, the loop-invariant holds.
- 2. Maintenance: Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop-invariant then also holds at the beginning of iteration i + 1.
- 3. Termination: Use the loop invariant to conclude that the algorithm indeed computes the value $2^n 1$ on input n.
- 4. What are the worst-case and best-case runtimes of the algorithm?