
Mock In-class Test

COMS10007 Algorithms 2018/2019

Throughout this paper log() denotes the binary logarithm, i.e, log(n) = log2(n), and ln() denotes
the logarithm to base e, i.e., ln(n) = loge(n).

1 O-notation

1. Let f : N→ N be a function. Define the set Θ(f(n)).

Proof.

Θ(f(n)) = {g(n) : There exist positive constants c1, c2 and n0

s.t. 0 ≤ c1f(n) ≤ g(n) ≤ c2f(n) for all n ≥ n0}

2. Give a formal proof of the statement:

10
√
n ∈ O(n) .

Proof. We need to show that there are positive constants c, n0 such that 10
√
n ≤ c ·n,

for every n ≥ n0. The previous inequality is equivalent to 10
c ≤

√
n, which in turn

gives 100
c2
≤ n. Hence, we can pick c = 1 and n0 = 100

12
= 100.

3. Use the racetrack principle to prove the following statement:

n ∈ O(2n) .

Hint: The following facts can be useful:

• The derivative of 2n is ln(2)2n.

• 1
2 ≤ ln(2) ≤ 1 holds.

Proof. We need to show that there are positive constants c, n0 such that n ≤ c ·2n. We
pick c = 1 and n0 = 1. Observe that n ≤ 2n holds for n = n0(= 1). It remains to show
that n ≤ 2n also holds for every n ≥ n0. To show this, we use the racetrack principle.
Observe that the derivative of n is 1 and the derivative of 2n is ln(2)2n. Hence, by
the racetrack principle it is enough to show that 1 ≤ ln(2)2n holds for every n ≥ n0,
or log(1

ln 2) ≤ n. Since 1
2 ≤ ln(2) ≤ 1, we have 1 ≤ 1

ln(2) ≤ 2 and 0 ≤ log(1
ln(2)) ≤ 1.

Hence, log(1
ln 2) ≤ n holds for every n ≥ 1(= n0), which thus proves n ≤ 2n for every

n ≥ n0.

1

2 Sorting

1. Why is Mergesort not an in-place sorting algorithm?

Proof. This is a bookwork question. An in-place sorting algorithm is only allowed to
use O(1) memory in addition to the array that is to be sorted. In the combine step
of Mergesort, it merges the sorted left and right halves of the input array. To this
end, it first copies the left half to a new array B and the right half to a new array C.
Arrays B and C are both of size Θ(n) in the initial call of Mergesort, which is not in
O(1).

2. A divide-and-conquer algorithm consists of three parts: The divide, the conquer, and the
combine phase. Compare Mergesort and Quicksort with regards to these three phases.

Proof. This is a bookwork question. In Quicksort, the combine phase is trivial, i.e.,
there is nothing to do. In Mergesort, in the combine phase the sorted left and right
halves need to be merged, which takes time O(n). In mergesort, the divide phase is
trivial and there is nothing to do. In Quicksort, the divide phase partitions the input
elements around a pivot which takes time O(n). The conquer phase is similar in both
algorithms, i.e., we recursively sort a subarray. However, in merge-sort, subproblems
are always balanced while in Quicksort, depending on the chosen pivot, we may have
highly unbalanced subproblems. . . .

3. What is the runtime (in Big-O notation) of Insertionsort when executed on the following
arrays of lengths n: (no justification needed)

(a) 1, 2, 3, 4, . . . , n− 1, n

Proof. This is Θ(n). No explanation is required here.
The reason for this is (and this is not a formal proof) that the inner loop always runs
in time O(1). Recall that in Insertionsort, the current element (determined by the
outer loop) is placed at the correct position within the already sorted prefix array.
On this input, the correct position however is the element’s initial position, and the
current element is therefore not moved at all. The loop thus stops immediately.

(b) n, n− 1, n− 2, . . . , 2, 1

Proof. This is Θ(n2). No explanation is required here.
The reason for this is (and this is not a formal proof) that the current element (deter-
mined by the outer loop) is always placed at the leftmost position within the already
sorted prefix array. For example, every element of the second half of the input is
therefore moved at least n/2 steps to the left. Hence, for at least n/2 elements in the
input, the elements move at least a distance of n/2. The runtime is therefore at least
n2/4 or Θ(n2).

3 Loop-Invariant

Consider the following algorithm:

2

Algorithm 1

Require: integer n ≥ 1
1: x← 1
2: for i← 1, . . . , n− 1 do
3: x← 2 · x + 1
4: end for
5: return x

The goal of this exercise is to show that this algorithm computes the value 2n − 1 on input
n. Let xi be the value of x at the beginning of iteration i (i.e., after i is updated in Line 2 and
before Line 3 is executed). Consider the following loop invariant:

xi = 2i − 1

1. Initialization: Argue that at the beginning of the first iteration, i.e. when i = 1, the
loop-invariant holds.

Proof. When i = 1, the loop invariant gives us x1 = 21 − 1 = 1. Observe that x
is initialized before the loop with the value 1. The loop invariant thus holds at the
beginning of the first iteration.

2. Maintenance: Suppose that the loop invariant holds at the beginning of iteration i. Argue
that the loop-invariant then also holds at the beginning of iteration i + 1.

Proof. Suppose that the loop invariant holds at the beginning of iteration i. Observe
that this means that the current value of x is xi = 2i − 1. In Line 3, we calculate
x = 2 · x + 1, and hence

xi+1 = 2 · xi + 1 = 2 · (2i − 1) + 1 = 2i+1 − 1 .

The loop invariant thus also holds at the beginning of iteration i + 1.

3. Termination: Use the loop invariant to conclude that the algorithm indeed computes the
value 2n − 1 on input n.

Proof. At the end of the last iteration (i.e., when i = n−1), or before the nth iteration
which is never executed, the loop invariant states that xn = 2n − 1. The algorithm
thus outputs the value 2n − 1.

4. What are the worst-case and best-case runtimes of the algorithm?

Proof. The algorithm always runs in time Θ(n). The best-case and worst-case runtime
is thus Θ(n).

3

