Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$. We also write $\log^c n$ as an abbreviation for $(\log n)^c$.

Make sure to put your name on every piece of paper that you hand in!

1 O-notation

1. Let $f : \mathbb{N} \to \mathbb{N}$ be a function. Define the set $\Omega(f(n))$.
2. Give a formal proof of the statement:
 $$10 \log n \in O(\log^2 n) .$$
3. For each of the following statements, indicate whether it is true of false: (no justification needed)
 - (a) $n \in O(n^2)$
 - (b) $\log n \in O(n^3)$
 - (c) $\log n \in O(\sqrt{\log n})$
 - (d) $n! \in O(2^n)$
 - (e) $2^{\log n} = O(\log^2 n)$
 - (f) $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$
 - (g) $f(n) \notin O(g(n))$ implies $g(n) \in O(f(n))$

2 Sorting Algorithms

Let A be an array of length n with $A[i] = A[j]$, for every $0 \leq i, j \leq n - 1$.

1. What is the runtime of Heapsort on A? (in Θ-notation, no justification needed)
2. What is the runtime of Mergesort on A? (in Θ-notation, no justification needed)
3. What is the runtime of Insertionsort on A? (in Θ-notation, no justification needed)
4. What are the best-case and worst-case runtimes of Mergesort? (no justification needed)
5. Illustrate how the Mergesort algorithm sorts the following array (for example using a recursion tree):

 9 3 2 7 1 6 11 4

 Continued on next page...
3 Loop-Invariant

Consider the following algorithm: (it takes two parameters, an array \(A \) of length \(n \) of positive integers, and an integer \(x \))

Algorithm 1

Require: \(A \) is an array of \(n \) positive integers, \(x \) is an integer

1: \(c \leftarrow 0 \)
2: for \(i \leftarrow 0, 1, \ldots, n - 1 \) do
3: if \(A[i] < x \) then
4: \(c \leftarrow c + 1 \)
5: end if
6: end for
7: return \(c \)

1. Consider the for-loop of the algorithm. One of the following options is a correct loop-invariant:

 At the beginning of iteration \(i \) (i.e., after \(i \) is updated in Line 2 and before the code in Lines 3, 4, and 5 is executed) ...

 (a) ... \(c = |\{ j : 0 \leq j < i \text{ and } A[j] < x \}| \)
 (b) ... \(c = |\{ j : 0 \leq j \leq i \text{ and } A[j] < x \}| \)
 (c) ... \(c = |\{ j : 0 \leq j < i \text{ and } A[j] \leq x \}| \)
 (d) ... \(c = |\{ j : 0 \leq j \leq i \text{ and } A[j] \leq x \}| \)

 State which one is correct.

2. Initialization: Consider the correct invariant. Argue that at the beginning of the first iteration, i.e. when \(i = 0 \), the loop-invariant holds.

3. Maintenance: Consider the correct invariant. Suppose that the loop invariant holds at the beginning of iteration \(i \). Argue that the loop-invariant then also holds at the beginning of iteration \(i + 1 \).

4. Termination: What does the algorithm compute? Argue that this follows from the correct loop invariant.