The Fibonacci Numbers

Fibonacci Numbers

\[
F_0 = 0 \\
F_1 = 1 \\
F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2.
\]

0 1 1 2 3 5 8 13 21 34 55 89 \ldots

Why are they important?

- Fibonacci heaps (data structure)
- Pseudo-random generators
- Appear in analysis of algorithms (e.g. Euclid’s algorithm)
- Interesting computational problem
Computing the Fibonacci Numbers

Naïve Algorithm

Require: Integer $n \geq 0$

if $n \leq 1$ then
 return n
else
 return $\text{FIB}(n - 1) + \text{FIB}(n - 2)$

What is the runtime of this algorithm?

Runtime:

- Without recursive calls, runtime is $O(1)$
- Hence, runtime is $O(\text{“number of recursive calls”})$
Runtime Analysis

Define Recurrence:

\(T(n) \): number of recursive calls to \(\text{FIB} \) when called with parameter \(n \)

\[
\begin{align*}
T(0) &= T(1) = 1 \\
T(n) &= 1 + T(n-1) + T(n-2), \text{ for } n \geq 2
\end{align*}
\]

How to Solve this Recurrence?

- We will use the recursion tree technique to obtain a guess for an upper bound
- We will verify the guess with the substitution method
Recursion Tree for T

Observe:
- Each node contributes 1
- Hence, $T(n)$ equals number of nodes
- Number of levels of recursion tree: n
- Our guess: $T(n) \leq c^n$ (we believe $c \leq 2$)
Recall:

\[T(0) = T(1) = 1 \]
\[T(n) = 1 + T(n - 1) + T(n - 2), \text{ for } n \geq 2. \]

Our guess: \(T(n) \leq c^n \)

Substitute Guess into Recurrence:

\[T(n) = 1 + T(n - 1) + T(n - 2) \leq 1 + c^{n-1} + c^{n-2} \]

- It is required that \(1 + c^{n-1} + c^{n-2} \leq c^n \)
- The additive 1 prevents us from getting a similar form as \(c^n \)
- Try different guess: \(T(n) \leq c^n - 1 \)
New Guess: $T(n) \leq c^n - 1$

$$T(n) = 1 + T(n-1) + T(n-2) \leq 1 + (c^{n-1} - 1) + (c^{n-2} - 1) = c^{n-1} + c^{n-2} - 1 .$$

Select smallest possible c:

$$c^{n-1} + c^{n-2} = c^n$$

$$0 = c^2 - c - 1$$

$$c = \frac{1 + \sqrt{5}}{2} \approx 1.618033989 . \text{ Golden Ratio!}$$

Base Case:

- $T(0) = T(1) = 1$
- $c^0 - 1 = 0$ and $c^1 - 1 \approx 0.61 \times$
Verification with the Substitution Method (3)

Another New Guess: \(T(n) \leq k \cdot c^n - 1 \)

\[
T(n) = 1 + T(n - 1) + T(n - 2) \\
\leq 1 + (k \cdot c^{n-1} - 1) + (k \cdot c^{n-2} - 1) \\
= k \left(c^{n-1} + c^{n-2}\right) - 1.
\]

Select smallest possible \(c \): \(c = \frac{1+\sqrt{5}}{2} \) as before

Base Case:

- \(T(0) = T(1) = 1 \)
- \(k \cdot c^0 - 1 = k - 1 \) and \(k \cdot c^1 - 1 > k - 1 \)
- We can hence select \(k = 2! \)

We proved \(T(n) \leq 2 \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n - 1 \). Hence \(T(n) \in O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right) \).
Experiments

Exponential growth

Dr. Christian Konrad
Lecture 15: The Fibonacci Numbers
Experiments

Logarithmic scale to base \(\frac{1+\sqrt{5}}{2} \)

Dr. Christian Konrad
Lecture 15: The Fibonacci Numbers

Logarithmic scale
Why is this Algorithm so slow?

Discussion:

- We compute solutions to subproblems many times ($T(i)$ is computed often, for most values of i)
- How can we avoid this?

Dynamic Programming!
Dynamic Programming (will be discussed in more detail later)
- Store solutions to subproblems in a table
- Compute table bottom up

DynPrgFib \((n) \)

```plaintext
Require: Integer \( n \geq 0 \)
if \( n \leq 1 \) then
    return \( n \)
else
    A ← array of size \( n \)
    A[0] ← 1, A[1] ← 1
    for \( i ← 2 \ldots n \) do
    return A[n]
```

Dr. Christian Konrad
Lecture 15: The Fibonacci Numbers 11 / 13
Analysis:
- DynPrgFib() runs in time $O(n)$
- It uses space $\Theta(n)$ since it uses an array of size n

Can we reduce the space to $O(1)$?

Improvement:
- Observe that when $T(i)$ is computed, the values $T(1), T(2), \ldots, T(i - 3)$ are no longer needed
- Only store the last two values of T
Improved Algorithm

\begin{algorithm}
\begin{algorithmic}
 \Require Integer $n \geq 0$
 \If{$n \leq 1$}
 \State \Return n
 \Else
 \State $a \leftarrow 0$
 \State $b \leftarrow 1$
 \For{$i \leftarrow 2 \ldots n$}
 \State $c \leftarrow a + b$
 \State $a \leftarrow b$
 \State $b \leftarrow c$
 \EndFor
 \State \Return c
 \EndIf
\end{algorithmic}
\end{algorithm}

$\text{IMPROVEDDYNPRGFIB}(n)$

Correctness: via loop invariant! (on exercise sheet 3)