Lectures 13/14: Solving Recurrences
COMS10007 - Algorithms

Dr. Christian Konrad

18.03.2019 and 19.03.2019
Algorithmic Design Principle: Divide-and-conquer

1. **Divide** the problem into a number of subproblems that are smaller instances of the same problem

2. **Conquer** the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)

3. **Combine** the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, mergesort, maximum subarray algorithm, binary search, Fast-Peak-Finding, ...
Example: Merge sort

Recall: Merge Sort

Runtime:

\[T(1) = O(1) \]

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \]
Example: Merge sort

Recall: Merge Sort

1 Divide
Split input array A of length n into subarrays $A_1 = A[0, \lfloor n/2 \rfloor]$ and $A_2 = A[\lfloor n/2 \rfloor + 1, n - 1]$
Example: Merge sort

Recall: Merge Sort

1. Divide $A \rightarrow A_1$ and A_2
2. Conquer
 Sort A_1 and A_2 recursively using the same algorithm

```
12 9 7 2 3 8 15 7
```
```
  2 7 9 12
```
```
  3 7 8 15
```
Example: Merge Sort

Recall: Merge Sort

1. **Divide** \(A \rightarrow A_1 \) and \(A_2 \)
2. **Conquer** Solve \(A_1 \) and \(A_2 \)
3. **Combine**
 Combine sorted subarrays \(A_1 \) and \(A_2 \) and obtain sorted array \(A \)

Runtime: (assuming that \(n \) is a power of 2)

\[
T(1) = O(1) \\
T(n) = 2T(n/2) + O(n)
\]
How to solve Recurrences?

Recurrences
- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences
- Substitution method
guess solution, verify, induction
- Recursion-tree method (previously seen for merge sort and maximum subarray problem)
 may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem
 very powerful, cannot always be applied
The Substitution Method

1. Guess the form of the solution
2. Use mathematical induction to find the constants and show that the solution works
3. Method provides an upper bound on the recurrence

Example (suppose \(n \) is always a power of two)

\[
\begin{align*}
T(1) &= O(1) \\
T(n) &= 2T(n/2) + O(n)
\end{align*}
\]
The Substitution Method

1. Guess the form of the solution
2. Use mathematical induction to find the constants and show that the solution works
3. Method provides an upper bound on the recurrence

Example (suppose \(n \) is always a power of two)

\[
T(1) = c_1 \\
T(n) = 2T(n/2) + c_2 n
\]

Eliminate \(O \)-notation in recurrence
The Substitution Method

1. Guess the form of the solution
2. Use mathematical induction to find the constants and show that the solution works
3. Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

\[
\begin{align*}
T(1) &= c_1 \\
T(n) &= 2T(n/2) + c_2 n
\end{align*}
\]

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

\[
T(n) \leq C n \log n
\]
The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every $n' < n$
- Corresponds to induction step of a proof by induction

$$
T(n) = 2T(n/2) + c_2n \leq 2C\frac{n}{2} \log\left(\frac{n}{2}\right) + c_2n \\
= Cn \left(\log(n) - \log(2)\right) + c_2n \\
= Cn \log n - Cn + c_2n \leq Cn \log n ,
$$

if we chose $C \geq c_2$. ✓

Verify the Base Case

$$
T(1) \leq C \cdot 1 \log(1) = 0 \not\geq c_1 \quad \times
$$

The base case is a problem...
Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2 n$

Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! $n = 2$

\[
T(2) = 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)
\]

\[
C2 \log 2 = 2C
\]

Hence, for every $C \geq c_2 + c_1$, our guess holds for $n = 2$:

\[
T(2) \leq C2 \log 2 .
\]

Result

- We proved $T(n) \leq C n \log n$, for every $n \geq 2$, when choosing $C \geq c_1 + c_2$
- **Observe:** This implies $T(n) \in O(n \log n)$ (important)

Asymptotic notation allows us to chose arbitrary base-case
A Strange Problem

Example: Give an upper bound on the recurrence

\[
T(1) = 1 \\
T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1
\]

Step 1: Guess correct solution \(T(n) \leq f(n) := Cn \)

Step 2: Verify the solution

\[
T(n) \leq C \lceil n/2 \rceil + C \lfloor n/2 \rfloor + 1 = Cn + 1 \not\geq f(n) \]

- We need a different guess
- Let’s try: \(f_1(n) := Cn + 1 \) and \(f_2(n) := Cn - 1 \)

\[
f_1 : T(n) \leq C \lceil n/2 \rceil + 1 + C \lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \not\geq f_1(n) \]
\[
f_2 : T(n) \leq C \lceil n/2 \rceil - 1 + C \lfloor n/2 \rfloor - 1 + 1 = Cn - 1 = f_2(n) \]

(holds for every positive \(C \))
Verify Base Case for f_2

- We have: $T(1) = 1$ and $f_2(1) = C - 1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_2 to $C = 2$
- Then $f_2(n) = 2n - 1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience
- However, recursion tree method can provide a good guess!
Recursion Tree Method

Recursion Tree:
- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

\[T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \]

\[T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32 = 2(2(2T(1) + 2) + 8) + 32 = 2(2(2 \cdot 1 + 2) + 8) + 32 = 64 \]
Example

\[T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + \frac{n}{2} \]

cost of subproblem

Recursion Tree for \(n = 64 \):

Sum of values assigned to nodes equals \(T(64) \)
Obtaining a Good Guess for Solution

\[T(1) = 1, \quad T(n) = 2 T(\lfloor n/4 \rfloor) + n/2 \]

Draw Recursion Tree for general \(n \) (Observe: we ignore \(\lfloor . \rfloor \))

Sum of Nodes in Level \(i \): \(\frac{n}{2^i} \) (except the last level)
Number of Levels: \(l \)
- We have \(\frac{n}{4^{l-1}} \approx 1 \)
- \(l = \log_4(n) + 1 \)

Cost on last Level: = number of nodes on last level
\[
\approx 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n}.
\]

Our Guess:
\[
\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i} \right) + \sqrt{n} = \left(n \cdot \sum_{i=1}^{\log_4(n)} \frac{1}{2^i} \right) + \sqrt{n} = n \cdot O(1) + \sqrt{n} = O(n).
\]

Use substitution method to prove that guess is correct!
Verification via Substitution Method

\[T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \]

Our Guess: \(T(n) \leq c \cdot n \)

Substitute into the Recurrence:

\[
T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \leq 2c\lfloor \frac{n}{4} \rfloor + \frac{n}{2} \leq n\frac{c+1}{2} \leq c \cdot n,
\]

for every \(c \geq 1 \).

Verify the Base Case: \(T(1) = 1 \leq c \cdot 1 = c \) for every \(c \geq 1 \).

Summary:

- We proved \(T(n) \leq n \), for every \(n \geq 1 \)
- Hence \(T(n) \in O(n) \)
Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction
- Guessing can be difficult