Quicksort

Require: array A of length n

if $n \leq 10$ then
 Sort A using your favourite sorting algorithm
else
 $i \leftarrow$ Partition(A)
 QUICKSORT($A[0, i-1]$)
 QUICKSORT($A[i+1, n-1]$)

Algorithm QUICKSORT

Partition A around a Pivot:
Quicksort

Require: array A of length n

if $n \leq 1$ then
 return A
else
 $i \leftarrow \text{Partition}(A)$
 QUICKSORT($A[0, i - 1]$)
 QUICKSORT($A[i + 1, n - 1]$)

Algorithm QUICKSORT

Partition A around a Pivot:
Quicksort

Require: array A of length n

- if $n \leq 1$ then
 - return A
- else
 - $i \leftarrow \text{Partition}(A)$
 - QUICKSORT($A[0, i - 1]$)
 - QUICKSORT($A[i + 1, n - 1]$)

Algorithm QUICKSORT

Partition A around a Pivot:
Quicksort

Require: array A of length n
if $n \leq 1$ then
 return A
else
 $i \leftarrow \text{Partition}(A)$
 QUICKSORT($A[0, i - 1]$)
 QUICKSORT($A[i + 1, n - 1]$)

Algorithm QUICKSORT

Partition A around a Pivot:

\[
\begin{array}{ccccccccccc}
14 & 3 & 9 & 8 & 16 & 2 & 1 & 7 & 11 & 12 & 5 \\
\end{array}
\]
Algorithm Quicksort

Partition A around a Pivot:
Quicksort

Require: array A of length n

if $n \leq 1$ then

return A

else

$i \leftarrow \text{Partition}(A)$

QUICKSORT($A[0, i - 1]$)

QUICKSORT($A[i + 1, n - 1]$)

Algorithm QUICKSORT

Partition A around a Pivot:

<table>
<thead>
<tr>
<th>14</th>
<th>3</th>
<th>9</th>
<th>8</th>
<th>16</th>
<th>2</th>
<th>1</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>5</th>
</tr>
</thead>
</table>

Partitioned array:

| 1 | 2 | 3 | 5 | 7 | 8 | 9 | 11 | 12 | 14 | 16 |
Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

\[
T(1) = O(1) \quad \text{(termination condition)}
\]

\[
T(n) = O(n) + T(n_1) + T(n_2),
\]

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:
- Suppose that pivot is always the largest element
- Then, $n_1 = n - 1, n_2 = 0$

Best-case:
- Suppose pivot splits array evenly, i.e., pivot is the median
- Then, $n_1 = \lceil \frac{n-1}{2} \rceil, n_2 = \lfloor \frac{n-1}{2} \rfloor$
Quicksort: Worst case

Partition: Suppose Partition() runs in time at most Cn, for a constant C

Recurrence:

$$T(n) \leq Cn + T(n - 1)$$

Total Runtime:

$$T(n) \leq \sum_{i=1}^{n} Ci = C \sum_{i=1}^{n} i$$

$$= C \frac{(n + 1)n}{2}$$

$$= \frac{C}{2}(n^2 + n) = O(n^2)$$
Quicksort: Best case

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: l

- Last level: $n = 1$

 \[
 \frac{n}{2^{l-1}} \leq 1
 \]

 \[
 \log(n) + 1 \leq l
 \]

- Last but one level: $n = 2$

 \[
 \frac{n}{2^{l-2}} > 1 \text{ which implies } \log(n) + 2 > l
 \]

 Hence, there are $l = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

- Observe: Total runtime of Partition() in a level: $O(n)$

- Total runtime: $l \cdot O(n) = O(n \log n)$
Good versus Bad Splits:

- It is crucial that subproblems are *roughly* balanced.
- In fact, enough if $n_1 = \frac{1}{1000} n$ and $n_2 = n - 1 - n_1$ to get a runtime of $O(n \log n)$.
- Even enough if subproblems roughly balanced *most of the time*.
- In practice, this happens most of the time, *Quicksort* is therefore usually very fast.
Only good splits: Recursion tree depth \(\lceil \log n \rceil + 1 \)
Good & bad splits alternate: Recursion tree depth $2 \cdot (\lceil \log n \rceil + 1)$
Selecting good Pivots

Ideal Pivot: Median

Pivot Selection
- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random! (Implementation: exchange $A[n - 1]$ with a uniform random element $A[i]$)
Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- *Expected runtime*: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is *bad* if $\min\{n_1, n_2\} \leq \frac{1}{10} n$.

If we select the pivot randomly, how likely is it to have a bad split?
Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction.
- Since our choice is random, this happens with probability 0.2.
- Hence, in average only 1 out of 5 splits is bad.
- Hence, 4 out of 5 times the algorithm makes enough progress.

Random Pivot Selection: Quicksort runs in expected time $O(n \log n)$ if the pivot is chosen uniformly at random.