Lecture 8 and 9: Trees and Heap Sort
COMS10007 - Algorithms

Dr. Christian Konrad

19.02.2019 and 25.02.2019
Sorting Algorithms seen so far

- Insertion-Sort: $O(n^2)$ in worst, in place, stable
- Merge-Sort: $O(n \log n)$ in worst case, NOT in place, stable

Heap Sort (best of the two)

- $O(n \log n)$ in worst case, in place, NOT stable
- Uses a heap data structure (a heap is special tree)

Data Structures

- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms
- For example, an array is a data structure
Definition: A tree \(T = (V, E) \) of size \(n \) is a tuple consisting of

\[
V = \{v_1, v_2, \ldots, v_n\} \text{ and } E = \{e_1, e_2, \ldots, e_{n-1}\}
\]

with \(|V| = n\) and \(|E| = n - 1\) with \(e_i = \{v_j, v_k\}\) for some \(j \neq k\) such that for every node \(v_i\) there is at least one edge \(e_j\) such that \(v_i \in e_j\). \(V\) are the nodes/vertices and \(E\) are the edges of \(T\).
Definition: (rooted tree) A *rooted* tree is a triple $T = (v, V, E)$ such that $T = (V, E)$ is a tree and $v \in V$ is a designed node that we call the *root* of T.

Definition: (leaf, internal node) A *leaf* in a tree is a node with exactly one incident edge. A node that is not a leaf is called an *internal node*.
Further Definitions:

- The **parent** of a node v is the closest node on a path from v to the root. The root does not have a parent.
- The **children** of a node v are v’s neighbors except its parent.
- The **height** of a tree is the length of a longest root-to-leaf path.
- The **degree** $\deg(v)$ of a node v is the number of incident edges to v. Since every edge is incident to two vertices we have
 \[
 \sum_{v \in V} \deg(v) = 2 \cdot |E| = 2(n - 1) .
 \]
- The **level** of a vertex v is the length of the unique path from the root to v plus 1.
Property: Every tree has at least 2 leaves

Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

\[
\sum_{v \in V} \deg(v) = \sum_{v \in L} \deg(v) + \sum_{v \in V \setminus L} \deg(v) \\
\geq |L| \cdot 1 + (|V| - |L|) \cdot 2 = 2|V| - |L| \geq 2n - 1,
\]

a contradiction to the fact that $\sum_{v \in V} \deg(v) = 2(n - 1)$ in every tree. \square
Definition: (k-ary tree) A (rooted) tree is *k-ary* if every node has at most *k* children. If *k* = 2 then the tree is called binary. A *k*-ary tree is

- **full** if every internal node has exactly *k* children,
- **complete** if all levels except possibly the last is entirely filled (and last level is filled from left to right),
- **perfect** if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree
Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

- The number of nodes in a perfect k-ary tree of height $i - 1$ is

$$\sum_{j=0}^{i-1} k^j = \frac{k^i - 1}{k - 1}.$$

- In other words, a perfect k-ary tree on n nodes has height:

$$\log_k(n(k - 1) + 1) = O(\log_k n).$$

- Similarly, a complete k-ary tree has height $O(\log_k n)$.

Remark: The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.
Priority Queues

Priority Queue:
Data structure that allows the following operations:

- Build(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure
- others...

Sorting using a Priority Queue
Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

- Parent of i: $\lfloor i/2 \rfloor$
- Left/Right Child of i: $2i$ and $2i + 1$
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad
Lecture 8 and 9: Trees and Heap Sort
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)
The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)
The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root
Important for Extract-Max(.)
Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: `Heapify()`
Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: **Build(.)**
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: Heapify()
The Heapify Operation

Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Constructing a Heap: Build(.)

Given a binary tree, transform it into one that fulfills the Heap Property

1. Traverse tree with regards to right-to-left array ordering
2. If node does not fulfill Heap Property: **Heapify()**
Heapify()
Let p be the key of a node and let c_1, c_2 be the keys of its children
- Let $c = \max\{c_1, c_2\}$
- If $c > p$ then exchange nodes with keys p and c
- call Heapify() at node with key c

Runtime:
- Exchanging nodes requires time $O(1)$
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of Heapify: $O(\log n)$.

Constructing a Heap: Build(.) Runtime $O(n \log n)$
More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

- **Heapify(x):** $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
More Precise Analysis of the Heap Construction Step

- **Heapify(x):** \(O(\text{depth of subtree rooted at } x) = O(\log n) \)
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let \(i \) be the largest integer such that \(n' := 2^i - 1 \) and \(n' < n \)
- There are at most \(n' \) internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height \(i - 1 \)
More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
More Precise Analysis of the Heap Construction Step

- **Heapify(x):** $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
More Precise Analysis of the Heap Construction Step

- **Heapify(x):** \(O(\text{depth of subtree rooted at } x) = O(\log n) \)
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let \(i \) be the largest integer such that \(n' := 2^i - 1 \) and \(n' < n \)
- There are at most \(n' \) internal nodes (candidates for Heapify(\())\)
- These nodes are contained in a perfect binary tree
- This tree has height \(i - 1 \)
More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the “bottom”

Analysis:

- Let i be the largest integer such that $n' := 2^i - 1$ and $n' < n$
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height $i - 1$
Improved Analysis of Heap Construction

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

\[
\sum_{j=1}^{i} 2^{i-j} \cdot j \cdot \text{nodes in level } i - j \cdot \text{depth of subtree}
\]

\[
\sum_{j=1}^{i} 2^{i-j} \cdot j = 2^i \cdot \sum_{j=1}^{i} \frac{j}{2^j} = O(2^i) = O(n') = O(n) .
\]

We’ll prove \(\sum_{j=1}^{i} \frac{j}{2^j} = O(1) \) very soon...!
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()

2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

Build-heap()

Repeat n times:

1. Swap root with last element
2. Decrease size of heap by 1
3. Heapify(root)

12 11 9 8 5 2 1 7 3 14 16

Dr. Christian Konrad
Lecture 8 and 9: Trees and Heap Sort 16 / 23
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

| 3 | 11 | 9 | 8 | 5 | 2 | 1 | 7 | 12 | 14 | 16 |

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)
The Complete Algorithm

Putting Everything Together

| 1 | 2 | 3 | 5 | 7 | 8 | 9 | 11 | 12 | 14 | 16 |

1. Build-heap() $O(n)$
2. Repeat n times:
 1. Swap root with last element $O(1)$
 2. Decrease size of heap by 1 $O(1)$
 3. Heapify(root) $O(\log n)$

Runtime: $O(n \log n)$
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

![Diagram of a heap]

1 is moved from left to the right past 1 and 1

Heap-sort not stable
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat \(n \) times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
Heapsort is Not Stable

Example:
1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
Heapsort is Not Stable

Example:

1. Build-heap()
2. Repeat n times:
 1. Swap root with last element
 2. Decrease size of heap by 1
 3. Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
(Trick for Bounding Sums)

How to bound $\sum_{i=0}^{n-1} \frac{i}{2^i}$:

$$S_{n-1} := \sum_{i=0}^{n-1} \frac{i}{2^i}.$$

Trick: Consider $\frac{1}{2} S_{n-1}$

\[
\begin{align*}
S_{n-1} &= \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots + \frac{n-1}{2^{n-1}} \\
\frac{1}{2} S_{n-1} &= \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \cdots + \frac{n-1}{2^n} \\
S_{n-1} - \frac{1}{2} S_{n-1} &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^{n-1}} + \frac{n-1}{2^n} \\
&= \sum_{i=0}^{n-1} \frac{1}{2^i} + \frac{n-1}{2^n} = \frac{\frac{1}{2^n} - \frac{1}{2}}{\frac{1}{2} - 1} + \frac{n-1}{2^n} = O(1).
\end{align*}
\]
Where we are
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak finding</td>
</tr>
<tr>
<td>2</td>
<td>O-notation</td>
</tr>
<tr>
<td>3</td>
<td>Theta, Omega, RAM Model</td>
</tr>
<tr>
<td>4</td>
<td>Linear/binary search, Induction</td>
</tr>
<tr>
<td>5</td>
<td>Loop invariants, insertion-sort</td>
</tr>
<tr>
<td>6</td>
<td>Merge sort 1 (divide-and-conquer)</td>
</tr>
<tr>
<td>7</td>
<td>Merge sort 2, maximum subarray problem</td>
</tr>
<tr>
<td>8</td>
<td>Trees, Heap-sort (1)</td>
</tr>
<tr>
<td>9</td>
<td>Heap-sort (2), Exercises</td>
</tr>
<tr>
<td>10-</td>
<td>Quick-sort, sorting LB, radix-sort</td>
</tr>
<tr>
<td></td>
<td>Recurrences, Divide-and-conquer, dynamic programming</td>
</tr>
<tr>
<td></td>
<td>Basic data structures</td>
</tr>
</tbody>
</table>
From
Piazza/Drop-in/Office Hours...
Are all Functions Asymptotically Comparable?

Let f, g be positive functions. Is the following statement true?

Claim. $f(n) \notin O(g(n)) \implies g(n) \in O(f(n))$. **false!**
Are all Functions Asymptotically Comparable? (2)

\[f(n) = n \quad \text{and} \quad g(n) = n^{1+0.1 \sin(n)} \]

Not all Functions are asymptotically comparable!

- Observe that \(n^{1+0.1 \sin(n)} \) is infinitely often equal to \(n^{1.1} \) and infinitely often equal to \(n^{0.9} \)
- Therefore, neither \(f(n) \in O(g(n)) \) nor \(g(n) \in O(f(n)) \)

Another Example:

- \(f(n) = n \)
- \(g(n) = n^2 \) if \(n \) even and \(g(n) = \sqrt{n} \) if \(n \) odd