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Abstract

The computational complexity of a problem is intended to be a measure of how difficult the
problem is to solve. Three aspects of this discussed in the course are:

e Formal complexity measures — what properties they should have and how they compare.
e Practical complexity measures
e Practical problems — design and analysis of algorithms.

o NP-Completeness — an attempt to distinguish between problems with practical algo-
rithms and those without.

You may find the following sources of information useful.

“An Overview of the Theory of Computational Complexity”
Hartmanis and Hopcroft
Journal of the ACM, Vol. 18, No. 3, July 1971, pp. 444-475

This is a review paper on the general properties shared by all complexity measures.

“The Design and Analysis of Computer Algorithms”
Aho, Hopcroft and Ullman (Addison-Wesley)

Don’t confuse this with other books by the same authors (or subsets of them). This is an
easily available general book which concentrates on (2) above. The bibliographic notes at the
end of each chapter are useful, though the book is getting a bit old.

“Computers and Intractability”
Garey and Johnson (Freeman)

This is a more recent book which specialises in NP-completeness. It contains a large catalogue
of problems which have been shown to be NP-complete.



Chapter 1

Formal Measures of Computational
Complexity

1.1 The Definition of a Complexity Measure

In fact we cannot measure the (computational) complexity of a problem, only the complexity
of a particular algorithm for solving the problem. It turns out that there are problems with
no fastest algorithm, and so we cannot define the complexity of a problem as the complexity
of its fastest algorithm. In addition, different measures of complexity yield different results
(unlike different definitons of computability), and there are no obvious “correct” measures.
Even different versions of the Turing Machine lead to different complexity measures. Thus we
need to say what measures are allowed, what properties they have, and how they compare.

The first step in defining a complexity measure is to decide how the information in an
instance of a problem, and the result, are to be represented or encoded as integers, so that
the problem may be regarded as a number-theoretic function of one argument.

Next, we must decide how algorithms are to be represented, for instance as Turing Ma-
chines. The representation of an algorithm will presumably be finite, leading to an effective
enumeration of all algorithms (and thus of all partial recursive functions). We use ag, a1, ag, . . .
to denote both the (representations of) the algorithms and the partial recursive functions they
compute. An enumeration ag, ai,as,... is an effective enumeration of algorithms if, given
and n, we can find a; and simulate its behaviour on argument n. In other words, the function
f(i,n) = a;(n) is partial recursive.

Then for each algorithm and each argument for which the algorithm successfully computes
a value, there must be a number ¢ measuring the complexity of the computation. This number
¢ must be calculable in the sense that given a bound m, we can follow the computation until
either the computation stops and we have found ¢, or we are sure that ¢ > m (possibly
undefined). This leads us to a definition of complexity measure as follows.

Definition 1.1 A computational complexity measure A consists of an effective enumeration
ag, 01,09, - .. of algorithms, together with corresponding measuring functions Ag, A1, Ao, ...
such that

1. A;(n) is defined iff a;(n) is defined.
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2. The function M below is a recursive function:

M(i,n,m) = 1 if A;(n)<m
0 otherwise

Note that if we find that A;(n) < m, we can then calculate A;(n) and a;(n) because of
the effectiveness of the enumeration a;.

The first question we should ask is whether this definition includes the most obvious
and natural complexity measures. Certainly the time (number of steps) taken by a Turing
Machine fits this definition if we take a; to be the i’th TM and A;(n) to be the number of
steps taken by a; on argument n. The function M is recursive since we can follow the action
of a; on argument n for m steps and put M (i,n,m) = 1 if the computation has stopped.

Another natural measure is the amount of space taken by a TM, say measured as the
number of tape cells scanned during a computation. This fits in with (1) above provided we
say that the number of cells scanned is undefined if the computation doesn’t stop. However,
it is not immediately clear that (2) holds, since a TM computation may continue indefinitely
without scanning more than m cells. At any stage of such a computation, the cells which have
been scanned form a contiguous block including the starting cell, so the computation remains
within the 2m — 1 cells centred on the starting cell. Thus an instantaneous description of the
computation consists of the current state, currently scanned cell, and the contents of these
2m — 1 cells. There are only a finite number of possible instantaneous descriptions, and so
if we simulate a computation as a sequence of such descriptions, one of the following must
happen:

1. The computation terminates, and we can determine the number A;(n) of cells used.

2. A step of the computation takes us out of the 2m — 1 cells we have been monitoring, in
which case we know A;(n) > m (or undefined).

3. A description is repeated, in which case we know that the computation cycles indefinitely
and A;(n) is undefined.

Now we know that the definition is not too restrictive because it includes TM time- and
space-complexity. The next question is whether the definition is restrictive enough to exclude
trivial measures. Bounded measures, such as A;(n) = 0 if a;(n) is defined, are excluded by
the following theorem.

Theorem 1.1 Let A be any complezity measure and let g be any recursive function. Then
there is a recursive function f such that any algorithm a; for f satisfies A;(n) > g(n) for
large n (all n > some N;).

Proof. The idea of the proof is to simulate the algorithms a; and to set f # a; at suitable
moments. We then say that a; has been dealt with. As time goes on, we can simulate more
algorithms, and we can simulate them for more steps. When calculating f(n), we simulate
the first n algorithms for g(n) steps. Let a; be the first computation which has stopped within
g(n) steps, and which has not been dealt with previously, if any.

f(n) = 0 if all a; with 4;(n) < g(n) have been dealt with
0 ifai(n)>0
1 ifai(n)=0
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The function f is recursive since g is recursive and for each i < n we can simulate a;(n)
for g(n) steps. Suppose a; is an algorithm for f. There is an N; > i such that all a;(j < 7)
have been dealt with (if they are ever dealt with) by the time the value f(NN;) is defined.
Then the definition ensures that A;(n) > g(n) for all n > N;.

O

There are thus arbitrarily complex functions which only have 0 or 1 for values — the
complexity is not bounded by the values taken. On the other hand the values taken can be
shown to be bounded by a recursive function of the complexity.

The Speed Up Theorem

Now we want to prove the “Speed Up Theorem” which tells us that there are functions with
no fastest algorithm. In a way, this is no surprise, as we can speed up the computation of
any function by having a table of the first few values. This increases the size of the algorithm
and increases the speed for small arguments, but may or may not increase the speed for
large arguments. In fact not all functions can be speeded up in the manner of the Speed Up
Theorem, and in any case the speeded up algorithm cannot be found effectively. First we will
prove it for one specific measure, Turing Machine space complexity, and then show how to
extend the result to any measure.

Theorem 1.2 (Speed Up Theorem For Space Complexity.) Let A be the complexity measure
defined as the number of cells used in a Turing Machine computation, and let g(n) be any
recursive function. Then there is a function f(n) such that given any algorithm a; for f,
there is another algorithm a; for f with

g(A4;(n)) < Aij(n) for large n
Thus if g(n) = 2", we get A; <log(A;). This could be repeated indefinitely.

Sketch Proof. Again we simulate the first n algorithms for a number of steps. Instead of
using a uniform bound g(n) for the number of steps, we use a different bound g;(n) for each
algorithm a;. The bounds g; are discussed in more detail below. They decrease rapidly with
1 so that f is more likely to have “large” algorithms. We define f to be unequal to the first
computation a;,% < n, which has stopped within g;(n) cells and which has not been dealt
with previously.

f(n) = 0 if all a; with A;(n) < g;(n) dealt with
0 if a;(n)>0
1 if a; (n) =0

The function f is recursive since we can calculate g;(n) for each ilen, and simulate the
ai(n)’s for g;(n) steps. Now if a; is any algorithm for f, we have

Ai(n) > gi(n) for large n (Vn > N;) (1.1)

Next we want to show that given k, we can calculate f within g cells, i.e. given k there
is an algorithm a; for f with

Aj(n) < gg(n) for large n (1.2)



CHAPTER 1. FORMAL MEASURES OF COMPUTATIONAL COMPLEXITY 4

Note that j is likely to be much larger than k. The algorithm has a table of answers for
ag,ai,...ag, and simulates agy1,akg42,... For each i < k, if a; is ever dealt with, let N; be
the argument for which f(V;) is made unequal to a;(N;). Let N be max(N;) over those 7, so
that if a; is dealt with for ¢ < k, it happens for an argument < N. Notice that although we
know NN exists, we cannot calculate it.

The TM for f stores, in its finite state control, details of all computations a;(n) within
gi(n) cells for i < k and n < N. For each n < k, the TM can thus immediately print out
f(n). If n > k, the TM acts as follows. It simulates each TM a; for k < i < n, for each
argument m < n, allowing g;(m) cells, determining the order in which the a; are dealt with.

For this algorithm to be possible within g (n) cells, we need to re-use the same space for the
different simulations, we need gg11,gki2,--- << gk, we need g;(n) to be “tape-constructible”
so that we can mark out a block of g;(n) cells without going outside those cells, and then
check that subsequent computations stay within the block, and we need the TM’s carefully
ordered so that simulation does not take up too much space. See Hartmanis and Hopcroft
for details.

The g; are arranged so that g(g;+1(n)) < g;(n) for large n. Thus the g; can be pictured
roughly as

9o 07 g, 925 933 943 57
g1 07 07 g, 92, g37 4a
g2 07 03 07 g, 923 3a
g3 07 07 07 Oa g, 2a

Suppose that a; is an algorithm for f. Then by equation 1.1 we have A; > g; for large n.
Let a; be an algorithm for f as above with A; < g;11. We have

9(45) < g(gi+1) <gi < A; for large n
as required, assuming that g is monotonic increasing.

O

To prove the Speed Up Theorem more generally, we need to show that any two complexity
measures A and B are recursively related, so that “easy” problems in one measure are “easy”
in all measures. To avoid discussion about comparing algorithms represented in different
ways, we assume that the enumerations {a;}, {b;} have been suitably adjusted so that a; and
b; compute the same function.

Theorem 1.3 Let A and B be any two complexity measures for which a; and b; compute the
same partial recursive function. Then there is a recursive function r(n,m) such that

Ai(n) <r(n,Bi(n)) for large n
Proof. We simulate the first n algorithms b; for m steps and put
r(n,m) = maz(A4;(n)) over i <n with B;j(n) <m

This is recursive because if B;(n) < m then b;(n) is defined, so a;(n) is defined, so we can
calculate A;(n). Then A;(n) < r(n,B;(n)) whenever n > i and either side is defined. Note
that we can replace r(n,m) by just r(m) if B;(n) > n.
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Theorem 1.4 (General Speed Up Theorem.) Let A be any measure and g any recursive
function. Then there is a recursive function f such that if a; is any algorithm for f, there is
an algorithm a; for f such that

g(4;(n)) < Ai(n) for large n

Proof. We can suppose that g(n) is monotonic increasing (otherwise replace it by max(g())
over i < n). Let B be the TM space complexity measure, and assume that a; and b; compute
the same partial recursive function, that A;(n) > n and B;(n) > n. Then the previous
theorem guarantees increasing recursive functions r and s with

A; <r(B;) and B; < s(A;) for large n

Using the Speed Up Theorem for TM space complexity, we can find f such that given any
algorithm a; for f, there is an algorithm a; for f with

S(9(r(B;)) < B; for laxge
Then

s(9(A7)) < s(g(r(B;))) < Bs < s(As)  for large n
giving

g(4;) < A; forlarge n

as required.
O

The results of this section may not have been particularly surprising, but the fact that
they follow from such a weak definition of complexity measure is surprising. For more results
about general complexity measures, and further properties which are desirable for them, see
Hartmanis and Hopcroft.



Chapter 2

Practical Complexity Measures

2.1 Representation of Problem Instances

In this chapter we are interested in complexity measures which capture the informal notion
of the time taken to solve a problem. We want to regard the complexity as a function of the
size of an instance of a problem, and this brings us back to the question of how instances are
represented or encoded as integers.

The convention we take is that the size of an instance is the amount of information
(number of TM cells) needed to specify the instance in a natural but compact way. Thus if
the problem is a number theoretic one such as “is the number n prime” the argument n must
be represented in a compact way, say in some number base b without leading zeros, in which
case the representation requires about log,(n) digits. We never worry about constant factors,
so the base of the logarithm does not matter. The complexity of such a number-theoretic
problem is regarded as a function of log(n). In the case of graphs, one natural compact
representation is as a list of edges, each edge being a pair of vertex labels. If the graph has
v vertices and e edges, and numbers 1 to v are used as vertex labels, the size of the instance
will be about e * log(v). If the graphs are dense, we might prefer an adjacency matrix giving
a size of about 2.

2.2 Turing Machine and RAM Complexity Measures

One of the powerful intuitive arguments suggesting that Turing Machines compute all com-
putable functions is that we can liken a TM to a mathematician with a large notebook and
eraser. Her actions are determined by her state of mind and the contents of the page open
in front of her. Her basic actions are to change what is on the page, turn the page and/or
change her state of mind. This argument also suggests that the number of steps taken by
a TM is a good time-complexity measure. TM time-complexity is thus taken as a yardstick
against which to compare other time-complexity measures. When comparing functions, we
use “big O” notation as follows.

Definition 2.1 We say f(n) = O(g(n)) to mean there is a constant k such that f(n) <
k* g(n) for all sufficiently large n.

Different versions of the TM model give time-complexities differing usually only quadrat-
ically (that is 71 = O(T%) and T, = O(T?)). Since we have to live with differences like this
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anyway, and since working out TM time-complexity is incredibly tedious, we actually use a
more convenient measure as follows.

We use RAM programs in which the basic instructions are simple arithmetic operations,
indexing (using a variable z to access a variable y[z]) and simple logical tests :-

x := 42

X =y + 42

X =y + z

X 1=y % z

x := ylz] (z a variable)
ylz] := x

if x = 0 then goto a
if x > y then goto a

RAM time-complexity is then the number of basic instructions executed. This measure
is not equivalent to TM complexity, not even within some polynomial factor since numbers
of the order of 22" can be calculated on a RAM by squaring O(n) times, whereas they need
about 2" cells just to be represented on a Turing Machine. The assumptions being made are
that the values of the variables are bounded (the limit on an actual computer is often about
231) so that there is a bound on the cost of arithmetic, and that the number of variables
is bounded so that the cost of accessing a variable z[i] is bounded. RAM complexity is an
acceptable measure provided that we check in each case what effect these assumptions have.

In order to justify this claim and compare RAM’s with TM’s in a direct way, we can
define another complexity measure, logarithmic RAM complexity, as follows. We put all the
variables of the RAM into a single sequence z[i] and charge a cost log(i)+log(z[i]) for accessing
a value z[i]. The cost for the addition =+ y is log(x) +log(y), and for the multiplication x *y
is (say) log(x) *log(y). This will lead to costs such as the following (where log(z[i]) refers to
the new value of z[i] etc.)

x[i] := x[j] log(j) + 2log(x[jl) + log(i)

. x[3] + x[k] log(j) + log(k) + 2log(x[jl) + 2log(x[k]) +...
x[x[i]] := ... log(i) + 2log(x[i]) + log(x[x[i]l]) +...
if x[i]=0 goto a log(i) + log(x[il)

Theorem 2.1 Turing Machine complezity and logarithmic RAM complezity are polynomially
related measures.

Proof. The polynomial bounds depend on the exact versions of the Turing Machine and
RAM, but are small, say T; = O(T%) or T; = O(Ty). First suppose we have a RAM program
which takes k steps on a particular input (using logarithmic cost). We simulate it using a
Turing Machine as follows. The TM’s tape contains, to the right of the origin, a description
of the current state of those RAM variables which are non-zero in the form

C#1o# x[4] # 5 # x[31 # ...



CHAPTER 2. PRACTICAL COMPLEXITY MEASURES 8

where # is some special symbol marking the beginning and end of numbers and where each
number ¢ and value z[i] are in some number base without leading zeros. Working space is
reserved to the left of the origin. Each pair (except, say, 0 & z[0] which represent the input)
must have been created by a separate RAM instruction of the form z[i] := ... which has
logarithmic cost log(i) + log(z[i]) + ..., i.e. approximately the length of the representation
#i#x[i1#. Thus the length of the representation of all the non-zero variables is O(k). To
access a variable z[i], the TM has ¢ in its workspace, looks for a pair #i#x[i]# and then
moves z[i] to its workspace. If it does not find such a pair, it knows z[i] = 0. This can be
done within O(k?) steps on a Turing machine with one head, or O(k) on a TM with two
heads. (Two heads are better than one!) With one head, the TM has to shuttle between
the representation of variables and the workspace comparing or copying one digit at a time,
and making marks on the tape to show where it has got up to. Similarly, updating a value
z[i] involves finding and deleting any old pair #i#x[i]# and replacing it with a new one,
which can also be done within O(k?) steps. Addition and multiplication are done in the
workspace by “school” algorithms which do one digit at a time and keep track of carries. It
should be clear that the Turing Machine can do this within some polynomial of the number
of digits involved, and thus within some polynomial of k, say O(k3). The RAM simulates
each instruction within O(k?), and it simulates O(k) instructions, so the total time is O(k*).

Using a RAM to simulate a Turing Machine is easier. We merely have an array of variables
z[i] to represent the contents of the cells, (ignoring the problem of negative cell numbers),
and a variable i representing the current position of the head. For each state s there is a
block of RAM instructions labelled s. Suppose the transition table for the TM indicates that
in state s, with current cell containing a, the TM changes the cell to b, moves right and goes
into state ¢. Then the block of instructions for s might begin

s: if x[i] /= a goto si
x[i] := b
i:=1i+1
goto t

sl: if x[i] /= b goto s2

As i is the only variable which is not bounded by a constant, and i = O(k) where k is the
number of steps taken by the TM, the cost of simulating this one step of the TM is O(log(k))
and simulating the whole computation is O(k x log(k)) = O(k?).

O



Chapter 3

Practical Problems

3.1 Algorithm Design — The Sorting Problem

Since in practice we approximate the time-complexity by using the (uniform cost) RAM
complexity measure, we may as well approximate the size of the input to a problem as well.
Thus in the problem of sorting n items taken from a total order into order (say numbers into
numerical order or words into alphabetical order), we take the size of the problem instance
to be n.

Remember, we are assuming that the items have some bounded size, and that they all fit
into our internal storage space (i.e. the space available for variables). In the literature, this
is sometimes called internal sorting to distinguish it from the case when we can’t make these
assumptions. Turing Machine or logarithmic RAM complexity is then more appropriate, but
the exact version also matters.

Our first stab at an algorithm for the sorting problem assumes for simplicity that we are
sorting numbers. Our approach is to find the largest, put it last, and then sort the remaining
n — 1.

To sort items x[1] to x[n] into ascending order.
1. for i=1 to n-1 do step 2
2. if x[i] > x[i+1] then swap the values x[i] and x[i+1]
3. sort the items x[1] to x[n-1]

It should be clear how to translate each step into primitive RAM instructions. The only
question is how the sorting in line 3 is to be carried out. Clearly, the intention is that it should
be carried out in the same way as the overall algorithm. In other words, we have specified
the algorithm recursively. This can be very simply achieved in this case by the instructions

3a. n:=n-1
3b. if n >= 2 then goto step 1

The effect of recursion can always be achieved, though in harder cases one might need to
keep a list of intermediate results and of partially executed subroutines.

Step 2 above can be done with some fixed number of instructions, i.e. in time O(1). Steps
1 and 3 involve repeating these n — 1 times, then n — 2 times and so on, giving a total of
n * (n — 1)/2 times, so the total time taken is O(n?). We clearly cannot get a better bound
than O(n?) using this algorithm.
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If we drop our assumptions and use logarithmic RAM complexity, the input size is O(n *
log(n)) (assuming we are sorting numbers between 1 and n). Step 2 takes O(log(n)) time
and is repeated O(n?) times, giving a total time of O(n? * log(n)), regarded as a function of
m = n *log(n). This is a nasty function of m, but it is clearly O(m?), so our assumptions
were justified. In many problems, the values of the variables are O(n) and the uniform and
logarithmic complexities differ by no more than a factor (log(n))* for some small constant k.

To get a better bound than n? on the complexity of sorting, we use the “divide and
conquer” approach — we split the problem in two and solve the halves. We ignore the problems
of odd n for the moment.

To sort items x[1] to x[n]

1. sort items x[1] to x[n/2]
2. sort items x[n/2+1] to x[n]
3. merge the two sorted lists

Again we have a recursively specified algorithm. The recursion can be handled by keeping
a list of pairs (¢,7), each representing a sequence of items z[i] to z[j] which need sorting.
Assuming this can be done with only a constant factor increase in the time taken for each
step, (you can always assume this), we can analyse the complexity as follows. Step 3 can be
done by running through the two lists simultaneously, copying the lesser of the two current
items to a second set of variables y[i], and then copying the resulting joint list back into the
z[i]. This takes O(n) time, say k+n. If T}, is the time taken by this algorithm to sort n items,
we get a recurrence equation

Tn=2+Ty+k*n

We can absorb any overhead involved in subroutine calling in steps 1 and 2 in the term
k * n. From this, it is easy to show by induction that 7;, = O(n * log(n)), an improvement
on our O(n?) bound above. The problem of odd n is most easily dealt with by pushing n
up to the next power of 2 by adding a few “infinite” items on the end. We have no more
than doubled n, so if the time taken for arbitrary n is S, then S, = O(Ts.,) which is still
O(n * log(n)).

There are many O(n *log(n)) sorting algorithms known, and the question arises whether
this is the best possible. Lower bounds on complexity are notoriously difficult to obtain, but
sorting is one problem where we have a clear-cut answer. We have to assume that nothing
is known about the total order from which the items are taken, and that all the information
which the algorithm gathers comes from direct comparisons between pairs of items, together
with inferences from the total order axioms. A lower bound on the complexity of sorting can
then be obtained by finding the minimum number of comparisons which can be made before
the order of the items is determined. There are n! possibilities to be distinguished, and any
one comparison can at best halve the number of remaining possibilities. (Remember that we
are interested in worst-case complexity.) Thus we need at least log(n!) comparisons. Since
n! > (n/2)"?, log(n!) > k% n x log(n) for some k.

3.2 Data Structure Design — Set Operations

Many algorithms require the handling of sets during their operation. As an example of this,
consider the minimum spanning tree problem. We are given a graph, each of whose edges has
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a cost associated with it. The graph might represent towns, the edges being possible routes
for building railway lines between pairs of towns. The edge cost would be the cost of building
such a rail link. The minimum spanning tree would represent the railway network of least
cost linking all the towns.

One algorithm for finding the minimum spanning tree begins by sorting the edges into
order of increasing cost. The first (lowest cost) edge is put into the tree. At each stage, the
next edge is put into the tree if it does not create a cycle, otherwise it is discarded. There
is a simple graph-theory proof (exercise) that this does indeed yield the minimum spanning
tree. The algorithm can be implemented by having a collection of sets T'[i] which partition
the vertices such that two vertices are in the same set iff they are currently joined by tree
edges. The next edge can then be tested to see if its ends are in the same set. If so, it is
discarded, otherwise they are in sets T'[i] and T[j], say. The edge is added to the tree, and
the the sets T'[i] and T'[j] are replaced by their union.

We need to design a way of representing these sets (i.e. a data structure for them) so that
we can cope with a sequence of set operations in the most efficient way. The set operations
which we need for the above problem are:

FIND Given an item i, find the set containing it.
UNION Form the (disjoint) union of two given sets.
We assume that the items are the numbers 1,...,n and that the sets partition the items.

The names of the sets are of no importance for this problem. In other problems where
the names are important, translations between internal names and external names can be
provided separately. Thus we will name the sets 7°[¢] with numbers ¢ = 1,...,n in such a way
that if T'[¢] is non-empty, i is its “first” element. Initially the sets consist of n singletons. We
assume that there will be n — 1 UNION operations and O(n) FIND operations in the course
of the algorithm.

The best data structure for the FIND operations is undoubtedly an array of variables s|i]
such that s[i] represents the set containing item i. Thus for n = 10, the array

i =1

2 3 4 5 6 7 8 910
s[il]=1 2 1 2 5 2 2 1 2 5

represents the non-empty sets

T[1] = {1, 3, 8}
T[2] = {2, 4, 6, 7, 9}
T[] = {5, 10}

The cost of finding the set containing ¢ is just the cost of accessing the variable s[i] which
is O(1). On the other hand, the cost of forming a union is high. Forming the union of 7T'[1]
and T'[5] above, for example, involves scanning all the variables s[i], and changing all those
with value 5 to value 1. The cost of this is O(n), so the cost of O(n) operations is O(n?).

The best data structure for the UNION operations is one in which the items in any one
set are in the form of a list, so that two lists may merely be concatenated. We need not insist
that the items in the list be in any particular order. For example, we could keep track of the
first and last elements in each set with variables f[i] and [[é], and for each item record the
next item in the same set in variables n[i]. Undefined values can be represented by zero. The
above sets would be represented by:
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i =1 2 3 4 5 6 7 8 910
f[il=1 2 0 0 56 0 0 0 0 O
1[iJ] =8 9 0 010 0 0 O O O
n[i] =3 4 8 610 7 9 0 0 O

The union of sets T[] and T'[j] can be carried out by the algorithm

To form the UNION of non-empty sets T[i] and T[j]

1. n[1[i]] := £[j]
2. 1[i] := 1[j]
3. f[j]l :=0

4. 1[j]1 :=0

It is easy enough (exercise) to add checks to cope with sets which may be empty. Thus
a UNION operation can be carried out in a time which is O(1). However, a FIND operation
involves searching all the lists, or following the list the item is in to the end and searching for
the last element among the [[i]. This is an O(n) operation and so once more the cost of O(n)
operations is O(n?).

To do better than this, we need some compromise data structure in which neither UNTON
nor FIND is too expensive. The answer is to use a tree to represent each set. The sets in our
example above might be represented as trees with roots 1, 2 and 5 thus.

1 2 5
/\ /\ I
8 3 6 4 10
/\
9 7

Terminology

When trees are used as data structures, they are traditionally drawn upside-down with the
root at the top, and the following terminology is used. The neighbours of a vertex which
are further from the root (lower) are called its children. The neighbour which is nearer to
the root (higher) is called the parent. The depth of a vertex is the distance from the root
(the root having depth 0). The height of a vertex is the maximum distance from any of its
descendents. The height of a tree is the height of its root. The weight of a tree is the number
of vertices in it. The following picture illustrates a tree drawn with the levels representing
depths, and with the levels representing heights.

1 1
/ \ / \
2 3 / 3
/ \ /7 \
4 5 /4 N\
/ \ / /N O\

6 7 2 6 7 b5
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In the above representation, UNION’s are implemented by making one tree a subtree of
the other, and to keep the trees well balanced (so the depth of an item does not grow too
fast) we should make the smaller tree a subtree of the larger. FIND’s can be implemented by
following the path from the item to the root. Thus we only need to store the parent of each
item in variables p[i], and the weight of each tree in wli].

i =12 3 4 5 6 7 8 910
plil =0 0 1 2 0 2 4 1 4 5
wlil]=3 5 0 0 2 0 0 0 0 O

Note that the non-zero values of these sets of variables match nicely so that in a practical
algorithm, they could be merged (say making the weights negative to distinguish them). It
is easy to see inductively that because we make the smaller tree a subtree of the larger,
the height of the trees is O(log(n)), so the time taken for O(n) operations is O(n * log(n)).
However, we can do better still by path compression. Whenever we FIND an item, and follow
the path to the root, we can make the items on the path children of the root to speed up
later FIND’s. Thus the algorithms for UNION and FIND are as follows.

To form the UNION of non-empty sets T[i] and T[j]

1. If w[i] < w[j] then exchange i and j
2. wl[i] := w[i] + w[j]
3. wljl :=0
4. pljl =1
To FIND the set containing an item i
Use variables j, 1[j] to keep a list of items on the path to the root
1. j:=0
2. while p[i] /= 0 do steps 3,4 and 5
3. ji=j+1
4, 1031 =1
5. i = pli]
6. for k =1,...,j do p[1[k]] := i
7. the item is in set T[i]

Definition 3.1 The fast growing function F(n) and the complementary slow growing function
G(n) are defined as follows. Note that G(n) <5 for “practical” values of n, i.e. forn < 265536

F(0) =1
F(n+1) = 2F()
G(n) = minimum k with F(k) > n

Theorem 3.1 The above data structure and algorithms allow O(n) UNION and FIND op-
erations on n items to be carried out in a time which is O(n * G(n)), i.e. almost linear.

Proof. For the purposes of the proof, we pretend that the algorithm keeps track of the parent
of each item, and also the (highest known) ancestor of each item. The FIND operations are
assumed to use and alter only the ancestor variables and not the parent variables, so that the
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tree structure at any stage is determined entirely by the UNION operations. Throughout the
proof a tree T; will have root r;, height h; and weight w;.

The first step in the proof is to show by induction that at any stage if an item has height
h, then it has at least 2" descendents. Suppose at some stage we form the UNION of trees T},
T» where wy > wy. Then r; becomes the parent of ro, and 1 is the only item whose height
or number of descendents have changed. The height of 71 becomes max(hi,he + 1) and the
number of descendents becomes w; + we. By induction,

wy > 2" and wy > 2M2
so
wi 4wy > wy > 2M
w1 +wy > 2k wy > 2202 > ghatl

Since there are n items, the above result shows that the height of any item never exceeds
loga(n). Moreover, there are at most n/2" items of height h, since any two items at the same
height have distinct sets of descendents. Now we partition the items into groups at each stage
according to their height by defining g(i) = G(h(i)) where h(i) is the height of item i. In
other words g(i) = j where F'(j —1) < h(¢) < F(j). Thus items of height 0 or 1 go into group
0, items of height 2 into group 1, items of height 3 or 4 into group 2, items of height 5,...,16
into group 3 and so on. As the height of an item never exceeds logs(n), the group number is
at most G(logz2(n)) < G(n) — 1, so there are at most G(n) groups.

A UNION operation takes O(1) time, so O(n) UNION operations take O(n) time. Any
constant overhead in a FIND operation similarly contributes O(n) time to the total. A FIND
operation may thus be regarded as taking a constant amount of time for each item whose
ancestor variable is altered. First consider those items whose ancestor belongs to a higher
group when the alteration is made. As the ancestor variables are followed during a FIND
operation, the height and thus the group of the items increases monotonically. As there are
at most G(n) groups, the number of items encountered whose ancestor is in a higher group is
at most G(n). These items thus contribute O(G(n)) to the time taken by a FIND operation,
and O(n x G(n)) to the total time taken.

It remains to consider those items whose ancestor is in the same group before the ancestor
is altered. Note that the height of the ancestor is strictly increased when it is altered, so the
ancestor of a particular item in group j is altered at most F(j) — F(j — 1) < F(j) times by
FIND operations before being in a higher group. Now as the number of items at height A is
at most n/2", the number of items in group j is bounded by

n/QF(j—1)+1 + n/QF(j—1)+2 4 n/QF(j)
n/2F0-D+ (1 £ 1/2 41/4+1/8 +...)
n/2FG=1

n/F(j)

IAIA A

Thus the total time taken on items in group j is O(n). This applies to all the groups,
and so the total time for these items is O(n * G(n)). Since we have split the time taken into
pieces each of which is O(n x G(n)), the total time taken is O(n * G(n)) as required.

O



Chapter 4

NP-Completeness

4.1 The Travelling Salesman Problem

In this chapter, we are looking for a means of distinguishing between those problems with
practical algorithms and those without. The subject was stimulated by a number of problems
which had no known practical algorithm, the most famous of which is probably the Travelling
Salesman Problem (TSP).

The problem involves a number of towns. The distance between each pair of towns is
known. The distance may be infinite if no direct route between the two towns is available.
The Travelling Salesman’s job is to start out from his home town, visit all the other towns
exactly once each, then return home. His problem is to find the shortest route. If he is more
interested in economy, he can replace the inter-town distances by inter-town costs.

All the known algorithms for solving this problem exactly (i.e. for finding the minimum
route rather than just finding a reasonable route) have exponential complexity. The most
obvious algorithm involves searching through all n! permutations of the n towms. An immense
amount of effort has been spent on this and similar problems in an attempt to find practical
algorithms. It would clearly save a lot of further effort if it could be shown that this problem
has no efficient algorithm for its exact solution. This has not been done, but the problem has
been shown to be NP-complete, which for practical purposes may be taken to mean that it
has no efficient algorithm.

The idea behind NP-completeness is to define a wide class NP of problems. The class
includes most combinatorial problems which arise in practice, and in particular includes the
Travelling Salesman Problem and many other long-standing unsolved problems. It is then
shown that the TSP and the other unsolved problems are as hard as possible in the class NP,
that is NP-Complete, in the sense that any problem in the class NP can be solved efficiently
from them. If any one of these NP-Complete problems could be solved in polynomial time,
then all problems in the class NP could be solved in polynomial time. This is now regarded
as extremely unlikely, so “NP-Complete” may be taken to imply “not having a polynomial
algorithm”.

4.2 The Class P of Polynomial Problems

It is instructive to contrast problems involving “exponential search”, i.e. involving searching
through a number of items which grows exponentially with the size of a problem instance,

15
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with those having polynomial algorithms, that is algorithms which take an amount of time
bounded by some polynomial in the size of the problem instance.

If we compare the time taken by algorithms of complexity n® and 2" microseconds for
instances of size n = 10, 20, 30, 40, 50, 60, we get

n ndu 2"

10 0.1 sec .001 sec

20 3.2 sec 1 sec

30 24.3  sec 17.9 min

40 1.7  min 12.7 days

50 5.2 man 35.7 wyears

60 13.0 nmun 366 centuries

Exponential algorithms thus quickly become impractical even for modest sizes of problem
instance. Moreover, if we increase the power of our computer, either with better hardware
or better software, by a factor of 100, the size of problem we can cope with goes up by a
factor of 2.5 for the n® algorithm, whereas for the 2" algorithm the size merely increases by
adding 6 or 7. It is clear that for practical purposes, the n® algorithm is acceptable, at least
as a basis on which to improve, but the 2" algorithm is not. In practice, few algorithms fall
between O(n®) and O(2"). Of course, there are functions such as 2™/%9(") which are more
than polynomial but less than exponential. It would seem natural to regard algorithms with
such complexities as unacceptable. We thus make the definitions:

Definition 4.1 A problem is called a decision problem (or “language” or “predicate”) if it
has a yes or no answer, i.e. if the corresponding number-theoretic function takes values 0 or
1. The rest of this section is restricted to decision problems for technical simplicity.

Definition 4.2 A decision problem is said to be polynomial if it has an algorithm of time-
complexity bounded by some polynomial in the size of a problem instance, i.e. of complexity
O(n¥) for some constant k. The class P is defined to be the class of polynomial decision
problems.

Note that most problems can easily be seen to be at least as hard as some corresponding
decision problem, so that to prove the problem non-polynomial, it suffices to show that the
corresponding decision problem is not in P. For example the TSP “find the minimum tour
in the weighted graph G” has a corresponding decision problem “does the weighted graph G
have a tour of weight at most k”.

Note also that the definition does not depend too crucially on the time-complexity measure
chosen. Any reasonable version of Turing Machine complexity or logarithmic RAM complexity
will give rise to the same class of problems. Indeed one might conjecture (along the lines of
Church’s thesis) that any “reasonable” time-complexity measures are polynomially related
and so define the same class P.

In order to tell whether a problem is practical or not, it suffices either to find a polynomial
algorithm or to show that the problem is not in class P. However, the only problems known
not to be in class P are either artificially constructed, or else are much worse than exponential.
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4.3 The Class NP (Non-deterministic Polynomial)

To make some headway with the problem of showing that some problems are intractable, we
define a class NP of decision problems which can be solved in a time O(Q”k) for some k. This
can be regarded as the class of problems solvable with one level of exponential search.

Informally, we can define this class NP in terms of a two-stage “non-deterministic” algo-
rithm. The first stage takes the input ¢, and from it produces some structure g by guessing.
The second stage conventionally processes the inputs ¢ and g. The solution to the original
problem is taken to be yes iff there is a guess g for which the second stage halts with answer
yes. The algorithm is said to be polynomial, or a member of NP, if the second stage is a
deterministic (conventional) algorithm with a complexity which is polynomial in the length
of input ¢. This implies a polynomial bound on the length of the guessed structure g.

For instance, in the TSP “does weighted graph G have tour of length at most k”, the
guessing stage can produce a permutation of the vertices of G. The second stage can, in
polynomial time, check whether the permutation defines a tour of length at most k. This
shows that the TSP is in the class NP.

Note that the definition of NP is not symmetrical in yes and no in the way in which the
class P is. NP can be regarded as a class of existence problems (“Is there a ...such that
...”7). In other words, whenever the answer to an NP problem is yes, there is a polynomially
checkable certificate of the fact. The complement of the TSP, namely “does the weighted
graph G have no tour of weight at most £”, is not obviously a problem in NP, having no
obvious compact certificate of a yes answer, and indeed it is not known to be in NP.

4.4 Other Definitions Of The Class NP

The above definition of NP can easily be formalised in terms of a Turing Machine which takes
input 4, follows it by an arbitrary number g, and then acts conventionally on the pair (i, g).

There are two variations on the definition of non-deterministic algorithm which apparently
yield greater power. First, the second part of the algorithm is often only required to stop in
the case of a yes answer. In other words, the overall problem is said to be in NP if whenever
the overall problem has answer yes, there is a guess for which the second part of the algorithm
delivers the answer yes within polynomial time. Suppose we have such an algorithm which
works within a time n*. We can arrange another algorithm for the problem as follows. We
add a mechanism which counts the number of steps taken in the first algorithm and stops after
n* steps, returning the answer no, if the first algorithm has not yet stopped. If we are dealing
with Turing Machines, the second algorithm can simulate one step of the first, including step-
counting, in O(n*) steps, and thus can simulate the whole algorithm in O(n* * n¥) = O(n?)
steps. Thus the new algorithm is fully polynomial, and gives the same overall answers to the
problem instances. The new algorithm can only be found effectively if a particular polynomial
bound is known for the old one, but it always exists.

The second (in fact the older) variation of the definition of non-deterministic algorithm is
as follows. At each step of the algorithm, instead of there being just one possible next step,
there is a finite set of possible next steps. The algorithm is deemed to give the answer yes if
any one of the possible sequences of steps which the algorithm could take yields the answer
yes. Thus the “guessing” or “non-determinism” is spread through the computation rather
than being concentrated at the beginning.
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A useful mental picture one can use in this situation is as follows. Imagine an unlimited
supply of machines, initially dormant. One machine is given the problem to solve. It makes
the first step of the computation and discovers that there are several possible next steps, all of
which must be explored. It chooses several dormant machines to which it passes the problem,
telling each which one of the possible steps to concentrate on, then waits for their replies.
The “child” machines take one step each, and then pass out sub-problems to more dormant
machines, and so on. Each machine passes back the answer yes to its parent if it receives a
yes back from any of its children.

Given a polynomial bound n* on the number of steps taken by such an algorithm, we can
simulate the action of the algorithm by first guessing the sequence of n* choices which will be
made at each step, then simulating the deterministic algorithm which those choices define. If
the algorithm does not stop within n* steps, give the answer no.

Thus for the purposes of defining NP these variations on the non-deterministic theme are
equivalent.

4.5 Building A Non-deterministic Machine

Because of the picture given above of machines passing each other sub-problems, many people
seem to think that a parallel computer with an effectively unlimited number of processors
would be able to “crack” the NP-complete problems. In particular the human brain can be
regarded as parallel computer with (very roughly) 10'° processors. Unfortunately, this is not
true.

To see why, define a parallel computer as follows. There is an infinite number of identical
processors (or a finite number of different types, which amounts to the same thing). Each
processor is an “automaton” or “finite machine”, that is a Turing Machine with a finite
tape. The processors are arranged in 3- (or finite-) dimensional space. Each takes up a
fixed minimum volume, and they cannot overlap. Each can only communicate with those
others within a fixed distance (or else one can take the finite speed of communication into
account). These restrictions make it clear that after a polynomially bounded time, only a
polynomially bounded number of processors will be taking part in the computation, whereas
our definition of a non-deterministic algorithm above requires exponentially many processors
to be involved. Our “practical” parallel computer in fact defines the same class P as a humble
Turing Machine! See a recent issue of Theoretical Computer Science for more details.

4.6 Polynomial Transformations And NP-Completeness

The classes P and NP are now on a sound footing, and we can get down to the business of
NP-completeness. The basic tool of NP-completeness is the polynomial transformation.

Definition 4.3 A problem X is polynomially transformable to a problem Y if there is a
polynomial algorithm p which transforms an input i to problem X into an input p(i) to problem
Y in such a way that input p(i) is accepted by Y (has answer yes) if and only if input i is
accepted by X.

Definition 4.4 Two problems are polynomially equivalent if each can be polynomially trans-
formed into the other.
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Definition 4.5 A problem X is NP-complete if it is in the class NP and all other problems
in the class NP polynomially transform to it.

If X is polynomially transformable to Y, we can say that X is no harder than Y (up to
a polynomial), and indeed if Y has a polynomial algorithm for its solution, then so does X.
The converse of this is what is used in NP-completeness proofs, so we grace it with the title
of theorem.

Theorem 4.1 If problem X polynomially transforms to problem Y in NP, and if X is NP-
complete, then Y is also NP-complete.

Proof. If we take any problem in the class NP, it is polynomially transformable to X. As X is
polynomially transformable to Y, we can combine the two transformations to get a polynomial
transformation from the problem to Y. Y is thus NP-complete.

O

This allows us to prove an unknown problem NP-complete by transforming a known NP-
complete problem to it. Note which way round this goes — we do not transform the unknown
problem to something else as we would do if we were trying to show that it was easy.

There is a (historically older) notion of polynomial reduction which can also be used
to define NP-completeness. Instead of transforming an input to problem X into an input
of problem Y to get a compound algorithm for X, X is said to reduce to Y if there is a
polynomial algorithm for X which uses the problem Y as a subroutine possibly many times
(each use counting as one step). This apparently more powerful definition might lead to a
larger class of NP-complete problems, though this is not known. All currently known NP-
complete problems can be shown NP-complete using transformations, and as this is usual
practice, we use transformations as the basis for our definition.

4.7 Cook’s Theorem — Satisfiability is NP-Complete

It is now clear that once we have one NP-complete problem, we can transform it to others
and prove many problems NP-complete. However, at least one problem has to be shown
NP-complete the hard way — by showing that all problems in NP transform to it. The honour
of being the “first” NP-complete problem goes to a problem in propositional logic — the
satisfiability problem.

Definition 4.6 The satisfiability problem is as follows. Given an expression or formula in
propositional logic formed from wvariables xz,y,z,..., connectives A (and), V (or), = (not),
= (implies) and < (if and only if), and brackets, is there an assignment of the values true
and false to the variables which makes the resulting expression have value true. If so, the
expression is called satisfiable.

The size of an instance of the problem is the number of symbols in the expression. The
problem is slightly more general than Cook’s original one, as he insisted that the expression be
in a particular normal form. Because of the symmetry between true and false in propositional
expressions, the satisfiability problem is (computationally) equivalent to the problem of telling
whether an expression is not a tautology. Telling whether an expression is a tautology is not
(obviously) in NP as it (apparently) has no brief certificate of the fact.
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Theorem 4.2 (Cook’s Theorem.) The satisfiability problem is NP-complete.

Proof. The satisfiability problem is clearly in NP since we can guess an assignment of true
and false to the variables, then calculate the value of the resulting expression in polynomial
time.

Let X be an arbitrary problem in the class NP. We must show how to transform it to the
satisfiability problem. Suppose that X is presented as a Turing Machine which takes an input
i, makes a guess g, then acts in the normal way on the pair (i,g). Suppose that it takes at
most N = nF steps on an input i of length n. We may also suppose that the tape cells only
contain symbols T or F and that the Turing Machine never moves to the left of the input.
(The number of tape cells can always be reduced to two at the expense of the number of
states, and the input can be moved a suitable distance to the right before starting). Suppose
that the TM has K states.

The instantaneous state of the TM at any time can be described by the contents of the
first N tape cells, the current state, and the currently scanned cell. The computation can
thus be described by the values of the following propositional variables.

Sts 1<t<N, 1<s<K (State)
P, 1<t<N, 1<c<N (Position)
Cie 1<t<N, 1<c<N (Contents)

S;s means the TM is in state s at time ¢
P;. means the TM is scanning tape cell ¢ at time ¢
Ci. means the tape cell ¢ holds T at time ¢

The input ¢ determines the initial values C . = i.,1 < ¢ < n, of the first n tape cells,
and the guessed number g affects the initial values of the remaining cells C1 ., n < ¢ < N.
The state at time ¢ is thus described by 2 x N 4+ K variables, and the whole computation by
N % (2% N 4+ K) = O(n%) variables.

We can now construct a propositional expression from these variables which will mean
“the variables represent the computation of the TM for X on input i for some guess g, and
the computation stopped with answer yes within N steps”. The expression can be regarded
as having independent variables C . for n < ¢ < N, i.e. the guess g, all other variables being
determined from these. The expression is thus satisfiable if and only if there is a guess g
which leads to an answer yes, i.e. iff the input ¢ to problem X has answer yes. The expression
is constructed from the following clauses by putting brackets round each and joining them all
together with A.
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S11 APy clauses ensuring: initial state correct,

Cic e ic computation has input i (1 < ¢ <n),

Sip+ ...+ Sk TM in at least one state (1 <t < N),

=(Sts1 A Sts2) and at most one state (1 <t < N,1<sl #s2<K),
Pi1+...+ PN TM scanning at least one cell (1 <t < N),

“(Pre1 A Preo) and at most one cell (1 <t< N,1<¢cl#c2<N),
Sn,x NCn, TM stops (state K) by time N with yes in cell 1,
(St,s1 AP A Cip) = TM transitions, e.g. in state s; scanning T, write F,

(St41,62 A Pig1,c41 A —Cye) move R, enter state so (1 <t < N,1<c<N)

It is easy to check that the resulting expression is made up from a number of variables
polynomial in n, that each clause has polynomial length, that there are a polynomial number
of clauses, and that the construction of the whole expression from i takes a time polynomial
in the length n of 4. The existence of a polynomial algorithm has thus been shown, though
effectively producing it requires knowledge of a particular non-deterministic Turing Machine
algorithm for X together with a bound n* on its running time.

It is clear that the resulting expression is an input to the satisfiability problem, and that it
is satisfiable if and only if input 4 to problem X has answer yes. So any problem X in the class
NP is polynomially transformable to the satisfiability problem, which is thus NP-complete.
O

4.8 NP-completeness of the Travelling Salesman Problem

Now that we have one NP-complete problem under our belt, we can quite quickly transform
it into others. The first step is to transform a general propositional expression into a more
suitable normal form.

Definition 4.7 The 3-satisfiability problem is the problem of telling whether a propositional
expression is satisfiable, the expression being of a form such as

(aV-bVec)AN(—dV—-aVe)A...

i.e. a conjunction of clauses, each of which is a disjunction of three terms, each of which
is a simple variable or its negation.

Theorem 4.3 The 3-satisfiability problem is NP-complete.

Proof. The problem is clearly in NP, being a restriction of satisfiability. Methods for trans-
forming expressions to various normal forms are well-known by logicians, computer scientists,
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and hardware designers. The only subtlety is that exponential growth must be avoided to
make the transformation polynomial. For example in eliminating <>, we cannot merely replace

(AR =)

(61 = 62) A (62 = 61)

and then expand the four sub-expressions, since we have doubled the length of the original
expression, and we may double it again in expanding the four subexpressions and so on.
Instead, new variables must be introduced to represent each subexpression, and the expression
must broken down into short clauses, the first representing the expression as a whole, and the
others defining the added variables. For example, (a A b) < (¢ = d) might become

(e & N
(e < (aNb))A
(f & (c=d))

The clauses are bounded in length, (at most 7 symbols), and can be put into normal form
without expanding the length more than polynomially.
O

Now we have to move from propositional logic to graph theory. The first graph theory
problem we prove NP-complete is the vertex cover problem.

Definition 4.8 The vertex cover problem is as follows. Given a graph G and a number k, is
there a set V of vertices of G of size at most k which covers all the edges, that is such that
each edge has at least one end in V.

Theorem 4.4 The vertex cover problem is NP-complete.

Proof. The problem is in NP as the set V can be guessed, and then checked within polynomial
time. The 3-satisfiability problem can be tranformed into the vertex cover problem as follows.
Suppose an instance of the 3-satisfiability problem has the form

(aV-bVec)AN(=dV—-aVe)A...

From it, construct a graph G having two vertices for each variable, labelled a, —a, b, b, ...,
and three vertices for each clause z labelled x1,z9,z3. The graph has truth-setting edges
connecting a and —a, b and —b etc., so called because any vertex cover will have to include at
least one of a, —~a and at least one of b, —b etc. It also has three satisfaction-testing edges for
each clause z, joining z1, £9 and z3. Any vertex cover must contain at least two of these three
vertices. Finally, there are interconnecting edges connecting vertices x; to the three variables
(or negated variables) in clause z. Thus the above example instance of 3-satisfiability yields
a graph G pictured below.
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1 x3 1 Y3

The instance of vertex cover consists of the graph G, together with the number k = v+2x*c¢
where v is the number of variables, and ¢ the number of clauses. It is easy to see that the
construction can be carried out in polynomial time. It remains to show that the graph G has
a vertex cover of size at most k if and only if the expression from which it is transformed is
satisfiable.

First suppose that V is a vertex cover of G of size at most k. Then V must contain one
vertex from each pair a,—a, and two from each triple x1,x9,z3. This makes v +2*c = k
vertices, so there can be no more. The set V must also cover the connecting edges. Define
an assignment of true and false to the variables a, b, ¢ by setting variable a true if V contains
vertex a, false otherwise etc. A clause represented by x; has at least one vertex, say x1, not
in V, but V covers the connecting edge between z; and a (say), and so V must contain a, a
has value true, and the clause has value true. This holds for each clause, so the expression is
satisfiable.

Conversely, suppose that the expression is satisfiable with a particular assignment of true
and false to each variable. Define a set V of vertices of G as follows. Put a variable a into
the set if @ has value true, otherwise put —a into V. Each clause x has value true, so at least
one of its three terms x; has value true, say 1. Put zo and x3 into the set V. The set V has
k members, and is a vertex cover for G as required.

O

Next, we tackle the Hamiltonian circuit problem.

Definition 4.9 The Hamiltonian circuit problem is as follows. Given a graph G, is there
a tour which visits each verter exactly once and returns to the starting verter. This can be
regarded as a Travelling Salesman Problem in which each distance is 1 or infinite, and a finite
length tour is required.

Theorem 4.5 The Hamiltonian circuit problem is NP-complete.

Proof. The problem is in NP since a permutation of the vertices can be guessed, and then
checked for being a tour in polynomial time. The vertex cover problem can be transformed into
the Hamiltonian circuit problem as follows. Start with a graph G and number k representing
an instance of the vertex cover problem. From it, we create a graph H, an instance of the
Hamiltonian circuit problem.
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The vertices of H are as follows. There are k vertices si,...,s; which are intended to
select k vertices from G. Then for each edge e of G joining vertex a to vertex b there are 12
vertices e1 to eja, with e; to eg being associated with a, and e to e with b. (Some arbitrary
order (a,b) is decided on for the vertices of e).

The edges among the e; are as shown below. In addition, e, eg, €7, €12 may be connected
to other vertices. Also shown, are the only two possible ways, bar symmetry, in which the
edges among the e; could be included in a tour of H

el e’ el e’ el e’

I\ /| VAN I I

e2 X e8 e2 / e8 e2 e8

I /7 \ | /7 | | |

e3 €9 e3 €9 e3 €9

| | I | I

ed el0 e4d el0 e4d el0

I\ /7 | I\ | I

eb X ell eb \ ell eb ell

[/ \ | I\ I I

eb el2 eb el2 eb el2

| | I I I

Suppose that a vertex a is incident with edges e, f,..., g (in any order). Suppose that e;
to eg, and f7 to fi2,..., and g1 to gg are associated with a (for example). Then add edges

from each of the s; to ey, from eg to f7, from f15 to ... to g1 and from gg to each of the s;.
This completes the graph H, and the transformation from G can be done in polynomial time.

Suppose that G has a vertex cover V = {a,b,c,...} of size k. Then H has a tour which
starts at si, follows the vertices in each edge set e; associated with a, returns to sq, follows
the vertices in each edge set e; associated with b, returns to s3, and so on, finally returning to
the starting vertex s;. Since V is a vertex cover, each edge set e; will be entered at least once
corresponding to one of its end vertices. If it entered only once, a path such as the middle
one above is taken through the set, if twice, a path such as the right hand one above is taken.
In this way, the tour described passes exactly once through each vertex of H.

On the other hand, a tour of H has no choice but to follow all the vertices in each edge
set associated with a particular vertex a of G between visits to the vertices s;, and so defines
a set of k vertices of G which can be seen to be a vertex cover.

O

At last we reach the Travelling Salesman Problem again.
Theorem 4.6 The Travelling Salesman Problem is NP-complete.

Proof. The problem is in NP. The Hamiltonian circuit problem transforms to the TSP by
defining distances between the vertices to be 1 if they are joined by an edge, and infinite (or
2) if they are not. The TSP is then to find a tour of length at most n, where n is the number
of vertices.

O



