
Trees

1

2

Searching
Suppose we want to search for things in a list

One possibility is to keep the items in a 'randomly'
ordered list, so insertion is O(1), but then a search takes
O(n) time

Or, we could keep them in a sorted list, in which case
we can use a binary search which takes O(log(n)) time,
but then new items would have to be added in the
middle, which takes O(n) time

3

Trees
When there is a mixture of search and insert operations,
and both operations need to be well below O(n), then
the items can usefully be stored in an ordered binary
tree

A tree is created out of cells, with each cell having two
pointers

4

Balancing
We will create ordered binary trees, without worrying
about how well balanced the tree is

Balancing techniques include:

Reorder the input data (assuming few updates)
Occasionally re-construct the tree
Randomise the data (treap)
Use a self-balancing tree (red-black, AVL, 2-3, ...)

5

Tree structure
Here's a struct for holding one node in a tree of ints:

struct node {
 struct node *left;
 int key;
 struct node *right;
};
typedef struct node node;

This is essentially the same as
Tree a = Tip | Node (Tree a) a (Tree a)
in Haskell (using NULL for Tip)

6

New node
Here's a function to create a new node (a one-element
tree):

node *new_node(int n) {
 node *p = malloc(sizeof(node));
 *p = (node) { NULL, n, NULL };
 return p;
}

7

Recursive Insertion
Here's a recursive insertion function:

node *insert_node(node *p, int n) {
 if (p == NULL) p = new_node(n);
 else if (n < p->key)
 p->left = insert_node(p->left, n);
 else if (n > p->key)
 p->right = insert_node(p->right, n);
 return p;
}

It uses p as a current-node variable

When you call it, it returns a possibly updated node,
which you have to put back where you got it

8

Visualise tree

Pointers are shown pointing to the 'middle' of nodes, but
that's only for symmetry

9

Visualise insert

Inserting 5, pointer p points to nodes, moves down the
nodes, ends as NULL

10

Alternative Recursive Insertion
Here's a version which doesn't return anything, but uses
a pointer to a pointer:

void insert_node(node **p, int n) {
 if (*p == NULL) *p = new_node(n);
 else if (n < (*p)->key)
 insert_node(&(*p)->left, n);
 else if (n > (*p)->key)
 insert_node(&(*p)->right, n);
}

It updates in place, and only does it once

When we reach the right place, we have a pointer to
NULL, so we can replace it

11

Visualise

Now p points to a pointer, ends pointing to a box
containing NULL, and the box can be updated

12

Iterative Insertion
Here's a complicated iterative version:

node *insert_node(node *p, int n) {
 bool done = false;
 if (p == NULL) { p = new_node(n); done = true; }
 while (! done) {
 if (n == p->key) done = true;
 else if (n < p->key) {
 if (p->left != NULL) p = p->left;
 else { p->left = new_node(n); done = true; }
 }
 else {
 if (p->right != NULL) p = p->right;
 else { p->right = new_node(n); done = true; }
 }
 }
 return p;
}

13

Alternative Iterative Insertion
The structure is simpler using a pointer to a pointer:

void insert_node(node **p, int n) {
 bool done = false;
 while (! done) {
 if (*p == NULL) {
 *p = new_node(n); done = true;
 }
 else if (n == (*p)->key) done = true;
 else if (n < (*p)->key) p = &(*p)->left;
 else p = &(*p)->right;
 }
}

14

Choosing
Should you use recursive or iterative insertion, and
should you use pointers-to-pointers or not?

You can disregard what anybody says about efficiency -
what matters is complexity (and balance)

Use whichever you like - but when you write functions
which use both left and right subtrees instead of just
one, recursion stays simple while iteration gets nastier,
and pointers-to-pointers are complex

So most programmers use recursion, and not pointers-
to-pointers

15

A wrapper
Functions on trees are inconvenient if we force callers
to use the nodes directly, either they have to catch the
output (or pass a pointer-to-a-pointer)

So we need a wrapping structure for a tree:

struct tree {
 struct node *root;
};
typedef struct tree tree;

This can also be a useful place to put global information
about the tree

16

New tree
Here's a reasonable function to create a new tree:

tree *new_tree() {
 tree *t = malloc(sizeof(tree));
 t->root = NULL;
 return t;
}

17

Insertion
A wrapped insertion function is:

void insert(tree *t, int n) {
 t->root = insert_node(t->root, n);
}

The insert_node function is the pointer-to-node
recursive version, but the user can't tell which version
we are using

18

Recursive searching
Searching is a bit simpler, and can also be done
recursively or iteratively - here's a recursive version:

node *find_node(node *p, int n) {
 if (p == NULL) { }
 else if (n < p->key)
 p = find_node(p->left, n);
 else if (n > p->key)
 p = find_node(p->right, n);
 return p;
}

19

Iterative searching
Here's an iterative version:

node *find_node(node *p, int n) {
 bool done = false;
 while (! done) {
 if (p == NULL) done = true;
 else if (n == p->key) done = true;
 else if (n < p->key) p = p->left;
 else p = p->right;
 }
 return p;
}

20

Wrapping
Again, we want a wrapper function

It shouldn't export any nodes to the user, it should just
return (e.g.) a boolean to say whether the number is in
the tree or not

bool contains(tree *t, int n) {
 return find_node(t->root, n) != NULL;
}

21

Maps
A map is a structure which maps keys to values

For example, when counting words, you might want to
map word strings as keys, to integer counts as values:

struct node {
 struct node *left;
 char word[20];
 int count;
 struct node *right;
};

The tree would be structured according to the words,
and functions would retrieve or update the counts

22

Self balancing trees
There are many types of self-balancing tree, with red-
black trees being the most popular in libraries because
you only need one extra bit per node

The different types (AVL trees, 2-3 trees, ...) all use the
same mechanism but have different policies

23

Rotation
The mechanism used for balancing is rotation:

In both cases, A < P < B < Q < C

24

A rotate function
Here's a function to rotate right:

node *rotate_right(node *q) {
 node *p = q->left;
 q->left = p->right;
 p->right = q;
 return p;
}

A policy is an algorithm which decides what rotations to
do and when, according to some extra info in each node,
and which guarantees O(log(n)) depth

25

