Trees






Searching

Suppose we want to search for things 1n a list

One possibility 1s to keep the 1items 1n a ‘'randomly’
ordered list, so insertion 1s O(1), but then a search takes

O(n) time

Or, we could keep them 1n a sorted list, 1n which case
we can use a binary search which takes O(log(n)) time,
but then new i1tems would have to be added 1n the
middle, which takes O(n) time



Trees

When there 1s a mixture of search and insert operations,
and both operations need to be well below O(n), then
the 1tems can usefully be stored 1n an ordered binary
tree

A tree s created out of cells, with each cell having two
pointers



Balancing

We will create ordered binary trees, without worrying
about how well balanced the tree 1s

Balancing techniques include:

e Reorder the input data (assuming few updates)

® QOccasionally re-construct the tree

® Randomise the data (treap)

e Use a self-balancing tree (red-black, AVL, 2-3, ...)



Tree structure

Here's a struct for holding one node 1n a tree of ints:

struct node {
struct node *left;
int key;
struct node *right;
}s
typedef struct node node;

This 1s essentially the same as
Tree a = Tip | Node (Tree a) a (Tree a)

1n Haskell (using NULL for Tip)




New node

Here's a function to create a new node (a one-element
tree):

node *new_node(int n) {
node *p = malloc(sizeof(node));
*xp = (node) { NULL, n, NULL };
return p;




Recursive Insertion

Here's a recursive 1nsertion function:

node *insert_node(node *p, int n) {
if (p == NULL) p = new_node(n);

else if (n < p->key)
p->left = dinsert_node(p->left, n);

else if (n > p->key)
p->right = dinsert_node(p->right, n);

return p;

}

It uses p as a current-node variable

When you call 1t, 1t returns a possibly updated node,
which you have to put back where you got 1t



Visualise tree

Pointers are shown pointing to the 'middle’ of nodes, but
that's only for symmetry



Visualise 1nsert

P q 2 N
~
P " 11
/ fq
p q C' 7 \
0 = NULL ‘1\7

Inserting 5, pointer p points to nodes, moves down the
nodes, ends as NULL



Alternative Recursive Insertion "

Here's a version which doesn't return anything, but uses
a pointer to a pointer:

void dinsert_node(node **p, int n) {
if (xp == NULL) *p = new_node(n);
else if (n < (xp)->key)
insert_node (& (*p)->left, n);
else if (n > (xp)->key)
insert_node(&(xp)->right, n);

}

It updates 1n place, and only does 1t once

When we reach the right place, we have a pointer to
NULL, so we can replace 1t



Visualise

P > tree variable

N

N
P

P d 11

P r® | 7

Now p points to a pointer, ends pointing to a box
containing NULL, and the box can be updated

12



Iterative Insertion

Here's a complicated terative version:

node *insert_node(node *p, int n) {
bool done = false;
if (p == NULL) { p = new_node(n); done = true; }
while (! done) {
if (n == p->key) done = true;
else if (n < p->key) {
if (p—>left != NULL) p = p—>left;
else { p->left = new_node(n); done = true; }

}
else {
if (p—>right != NULL) p = p->right;
else { p—>right = new_node(n); done = true; }
}
}
return p;




Alternative Iterative Insertion

The structure 1s simpler using a pointer to a pointer:

void dinsert_node(node **p, int n) {
bool done = false;
while (! done) {
if (xp == NULL) {
*p = new_node(n); done = true;
}
else if (n == (xp)->key) done = true;
else if (n < (xp)->key) p = &(*xp)->left;
else p = &(*p)->right;

14




Choosing 15

Should you use recursive or terative insertion, and
should you use pointers-to-pointers or not?

You can disregard what anybody says about efficiency -
what matters 1s complexity (and balance)

Use whichever you like - but when you write functions
which use both left and right subtrees instead of just
one, recursion stays simple while 1teration gets nastier,
and pointers-to-pointers are complex

So most programmers use recursion, and not pointers-
to-pointers



A wrapper 16

Functions on trees are inconvenient 1f we force callers
to use the nodes directly, either they have to catch the
output (or pass a pointer-to-a-pointer)

So we need a wrapping structure for a tree:

struct tree {
struct node *root;
}s

typedef struct tree tree;

This can also be a useful place to put global information
about the tree



New tree 17
Here's d reasonable funct'1on to create a new ftree:

tree *new_tree() {
tree *xt = malloc(sizeof(tree));
t->root NULL}
return t;




Insertion 18

A wrapped 1nsertion function 1s:

void insert(tree *t, int n) {
t->root = -dinsert_node(t->root, n);
}

The insert_node function is the pointer-to-node
recursive version, but the user can't tell which version
we are using



Recursive searching

Searching 1s a bit simpler, and can also be done

recursively or 1teratively - here's a recursive version:

node *xfind_node(node *p, int n) {
if (p == NULL) { }
else if (n < p—->key)
p = find_node(p->left, n);
else if (n > p->key)
p = find_node(p->right, n);
return p;

19




Iterative searching

Here's an 1terative version:

node *xfind_node(node *p, int n) {

bool done = false;

while (! done) {
if (p == NULL) done = true;
else if (n == p->key) done = true;
else if (n < p->key) p = p—->left;
else p = p->right;

}

return p;

20




Wrapping
Again, we want a wrapper function

It shouldn't export any nodes to the user, 1t should just

return (e.g.) a boolean to say whether the number 1s 1n
the tree or not

bool contains(tree *t, int n) {
return find_node(t->root, n) != NULL;
}




Maps 22
A map s a structure which maps keys to values

For example, when counting words, you might want to
map word strings as keys, to Integer counts as values:

struct node {
struct node *left;
char word[20];
int count;
struct node *right;

s

The tree would be structured according to the words,
and functions would retrieve or update the counts



Self balancing trees 23

There are many types of self-balancing tree, with red-
black trees being the most popular in libraries because
you only need one extra bt per node

The different types (AVL trees, 2-3 trees, ...) all use the
same mechanism but have different policies



Rotation

The mechanism used for balancing 1s rotation:

Right Rotation
< .
o e Left Rotation

In both cases, AKP<B<Q<C

24



A rotate function 25

Here's a function to rotate right:

node *rotate_right(node *q) {

node *p = q->left;
g->left = p->right;
p->right = q;
return p;

}

A policyis an algorithm which decides what rotations to
do and when, according to some extra info 1n each node,
and which guarantees O(log(n)) depth



