Trees






Searching

Suppose we want to search for things 1n a list

One possibility 1s to keep the 1items 1n a ‘'randomly’
ordered list, so insertion 1s O(1), but then a search takes

O(n) time

Or, we could keep them 1n a sorted list, 1n which case
we can use a binary search which takes O(log(n)) time,
but then new i1tems would have to be added 1n the
middle, which takes O(n) time



Trees

When there 1s a mixture of search and insert operations,
and both operations need to be well below O(n), then
the 1tems can usefully be stored 1n an ordered binary
tree

A tree s created out of cells, with each cell having two
pointers



Balancing

We will create ordered binary trees, without worrying
about how well balanced the tree 1s

Balancing techniques include:

e Reorder the input data (assuming few updates)

® QOccasionally re-construct the tree

® Randomise the data (treap)

e Use a self-balancing tree (red-black, AVL, 2-3, ...)



Tree structure

Here's a struct for holding one node 1n a tree of ints:

struct node {
struct node *left;
int key;
struct node *right;
}s
typedef struct node node;

This 1s essentially the same as
Tree a = Tip | Node (Tree a) a (Tree a)

1n Haskell (using NULL for Tip)




New node

Here's a function to create a new node (a one-element
tree):

node *new_node(int n) {
node *p = malloc(sizeof(node));
*xp = (node) { NULL, n, NULL };
return p;




Recursive Insertion

Here's a recursive 1nsertion function:

node *insert_node(node *p, int n) {
if (p == NULL) p = new_node(n);

else if (n < p->key)
p->left = dinsert_node(p->left, n);

else if (n > p->key)
p->right = dinsert_node(p->right, n);

return p;

}

It uses p as a current-node variable

When you call 1t, 1t returns a possibly updated node,
which you have to put back where you got 1t



Visualise tree

Pointers are shown pointing to the 'middle’ of nodes, but
that's only for symmetry
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Alternative Recursive Insertion "

Here's a version which doesn't return anything, but uses
a pointer to a pointer:

void dinsert_node(node **p, int n) {
if (xp == NULL) *p = new_node(n);
else if (n < (xp)->key)
insert_node (& (*p)->left, n);
else if (n > (xp)->key)
insert_node(&(xp)->right, n);

}

It updates 1n place, and only does 1t once

When we reach the right place, we have a pointer to
NULL, so we can replace 1t
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containing NULL, and the box can be updated
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Iterative Insertion

Here's a complicated terative version:

node *insert_node(node *p, int n) {
bool done = false;
if (p == NULL) { p = new_node(n); done = true; }
while (! done) {
if (n == p->key) done = true;
else if (n < p->key) {
if (p—>left != NULL) p = p—>left;
else { p->left = new_node(n); done = true; }

}
else {
if (p—>right != NULL) p = p->right;
else { p—>right = new_node(n); done = true; }
}
}
return p;




Alternative Iterative Insertion

The structure 1s simpler using a pointer to a pointer:

void dinsert_node(node **p, int n) {
bool done = false;
while (! done) {
if (xp == NULL) {
*p = new_node(n); done = true;
}
else if (n == (xp)->key) done = true;
else if (n < (xp)->key) p = &(*xp)->left;
else p = &(*p)->right;
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Choosing 15

Should you use recursive or terative insertion, and
should you use pointers-to-pointers or not?

You can disregard what anybody says about efficiency -
what matters 1s complexity (and balance)

Use whichever you like - but when you write functions
which use both left and right subtrees instead of just
one, recursion stays simple while 1teration gets nastier,
and pointers-to-pointers are complex

So most programmers use recursion, and not pointers-
to-pointers



A wrapper 16

Functions on trees are inconvenient 1f we force callers
to use the nodes directly, either they have to catch the
output (or pass a pointer-to-a-pointer)

So we need a wrapping structure for a tree:

struct tree {
struct node *root;
}s

typedef struct tree tree;

This can also be a useful place to put global information
about the tree



New tree 17
Here's d reasonable funct'1on to create a new ftree:

tree *new_tree() {
tree *xt = malloc(sizeof(tree));
t->root NULL}
return t;




Insertion 18

A wrapped 1nsertion function 1s:

void insert(tree *t, int n) {
t->root = -dinsert_node(t->root, n);
}

The insert_node function is the pointer-to-node
recursive version, but the user can't tell which version
we are using



Recursive searching

Searching 1s a bit simpler, and can also be done

recursively or 1teratively - here's a recursive version:

node *xfind_node(node *p, int n) {
if (p == NULL) { }
else if (n < p—->key)
p = find_node(p->left, n);
else if (n > p->key)
p = find_node(p->right, n);
return p;
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Iterative searching

Here's an 1terative version:

node *xfind_node(node *p, int n) {

bool done = false;

while (! done) {
if (p == NULL) done = true;
else if (n == p->key) done = true;
else if (n < p->key) p = p—->left;
else p = p->right;

}

return p;
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Wrapping
Again, we want a wrapper function

It shouldn't export any nodes to the user, 1t should just

return (e.g.) a boolean to say whether the number 1s 1n
the tree or not

bool contains(tree *t, int n) {
return find_node(t->root, n) != NULL;
}




Maps 22
A map s a structure which maps keys to values

For example, when counting words, you might want to
map word strings as keys, to Integer counts as values:

struct node {
struct node *left;
char word[20];
int count;
struct node *right;

s

The tree would be structured according to the words,
and functions would retrieve or update the counts



Self balancing trees 23

There are many types of self-balancing tree, with red-
black trees being the most popular in libraries because
you only need one extra bt per node

The different types (AVL trees, 2-3 trees, ...) all use the
same mechanism but have different policies



Rotation

The mechanism used for balancing 1s rotation:

Right Rotation
< .
o e Left Rotation

In both cases, AKP<B<Q<C
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A rotate function 25

Here's a function to rotate right:

node *rotate_right(node *q) {

node *p = q->left;
g->left = p->right;
p->right = q;
return p;

}

A policyis an algorithm which decides what rotations to
do and when, according to some extra info 1n each node,
and which guarantees O(log(n)) depth



