
Structures

1

2

Grouping
So far, we have been concentrating on primitive types
and arrays

But there is a need to group data values together into
'meaningful' structures

For example, a bird in an angry birds game might have
variables for its position, its velocity, and maybe other
values such as a size or a colour, yet you want to treat it
in a program as a single 'object'

3

Structs
The mechanism in C to group several values together
into a single entity is the struct

This represents the first step in the process of
developing 'object oriented programming', which will be
explored in the Java unit

4

Declaring a struct
Suppose you have a 2-D graphics program, and in it a
bird has a pair of x-y coordinates giving its position

Then you can declare a bird structure like this:

struct bird {
 int x, y;
};

Warning: don't forget the semicolon after the close
curly bracket (it is like an initializer, not like an if or
while block)

5

bird.c

Using a struct
/* Struct demo */
#include <stdio.h>

// A bird 'object' looks like this
struct bird {
 int x, y;
};

// Move a bird a bit then print
int main() {
 struct bird b = {41, 37};
 b.x++;
 b.y = b.y + 5;
 printf("%d %d\n", b.x, b.y);
}

6

https://csijh.gitlab.io/COMS10008/lectures/structures/bird.c

New type
The struct declaration creates a new type

struct bird {
 int x, y;
};

This is the type struct bird of bird variables

Each bird variable has two int fields (sub-variables)
called x and y

7

Struct variables
New variables can then be created

struct bird b = {41, 37};

In this case, the variable b is initialized by specifying its
fields in an initializer (don't forget the semicolon)

8

Accessing fields
Fields are accessed using the dot (.) notation

b.x++;
b.y = b.y + 5;

The field b.x is incremented by one, and b.y has 5
added to it.

9

Passing a struct
/* Struct demo: doesn't work */
#include <stdio.h>

struct bird { int x, y; };

// Move a bird by a given amount
void move(struct bird b, int dx, int dy) {
 b.x = b.x + dx;
 b.y = b.y + dy;
}

// Move and print
int main() {
 struct bird jay = {41, 37};
 move(jay, 1, 5);
 printf("%d %d\n", jay.x, jay.y);
}

10

Pass by value
The failed experiment shows that structs are passed by
value

In the example, the variable jay is copied into the
argument variable b, so changes to b do not affect jay

This is different from arrays, presumably because
structs are typically small

11

An abbreviation
The struct declaration has been abbreviated (to fit the
example onto one slide)

struct bird { int x, y; };

Both semicolons are still needed

12

struct.c

Returning a struct
/* Struct demo */
#include <stdio.h>

struct bird { int x, y; };

// Move a bird by a given amount
struct bird move(struct bird b, int dx, int dy) {
 b.x = b.x + dx;
 b.y = b.y + dy;
 return b;
}

int main() {
 struct bird jay = {41, 37};
 jay = move(jay, 1, 5);
 printf("%d %d\n", jay.x, jay.y);
}

13

https://csijh.gitlab.io/COMS10008/lectures/structures/struct.c

Returning two things
In the example we looked at, returning a structure was
an annoyance - it was just to allow us to write functions
which update structures temporarily, before we get to
pointers

But it is a good solution to a common problem: writing a
function which finds two things

So if position(...) returns the position of
something, a structure with x, y fields can be returned

14

Pass by reference
In practice, most programmers want to pass structs by
reference, not by value, to avoid the cost of repeatedly
copying the fields to and fro, and to allow functions to
update the fields directly

That's done by passing pointers to structs instead of the
structs themselves (see pointer chapter)

That will be a second step towards object oriented
programming

15

Typedefs
Typedefs let you avoid using the struct keyword so
often:

struct bird { int x, y; };
typedef struct bird Bird;
...
Bird move(Bird b) { ... }
...
int main() {
 Bird jay = {41, 37};
 ...
}

16

How typedefs work
A typedef doesn't define a type:

typedef struct bird Bird;

It defines a type synonym - another name for an
existing type

The new name Bird comes at the end (as if you were
declaring a variable), defined as a synonym for struct
bird

Don't leave out the final semicolon

17

Using a name twice
Often the same name is used:

typedef struct bird bird;

Technically, there are now two identical names bird

But one only ever comes straight after struct, and the
other never does, so the compiler can tell them apart

18

Using a name 3 times
It is possible to have a variable which has the same
name as a typedef:

bird bird;
bird.x = ...;

The compiler can tell the two names apart because one
only ever appears in 'type' positions, and the other only
appears in 'variable' positions

But you can't do that for built-in type names:

int int = 42;

19

Arrays inside structures
To analyse a document, counting the number of times
each word appears, you could use a structure like this:

struct word {
 char s[10];
 int count;
};

The array field s holds the word as a string

It has to be fixed length (a compile-time constant) so
that the C compiler can do type and size analysis

We will see how to make it variable length in the
memory chapter

20

Constant structures
Sometimes, you want to provide mostly readonly-access
to a structure

A neat way to do it is this:

struct word { char s[10]; int count; };

typedef struct word const word;

From now on, the type word provides readonly access,
whereas the type struct word provides full access

21

