
Strings

1

s1.c

String constants
/* Demo: string constant */
#include <stdio.h>

int main() {
 printf("Hi\n");
}

String constants are in double quotes

A backslash \ is used to include 'special' characters, with
\\ used to include a backslash, e.g. "H\\i"

In printf only, % is used to print special values, with
%% to print a percent sign, e.g. printf("100%%\n")

2

https://csijh.gitlab.io/COMS10008/lectures/strings/s1.c

s2.c

Strings as arrays
...
int main() {
 char hi[] = "Hi\n";
 printf("%s", hi); (hi already has a newline)
}

A string is an array of characters - it can be initialised
with a string constant, and printed with %s

This version fails, though!

char hi[3] = "Hi\n";

3

https://csijh.gitlab.io/COMS10008/lectures/strings/s2.c

s3.c

Marker character
...
int main() {
 char hi[] = {'H', 'i', '\n', '\0'};
 printf("%s", hi);
}

The characters in a string must have a marker character
\0 (= character with code 0 = null character) at the end

This version works!

char hi[4] = "Hi\n";

4

https://csijh.gitlab.io/COMS10008/lectures/strings/s3.c

s4.c

Marker not counted
/* Demo: length of string */
#include <stdio.h>
#include <string.h>

int main() {
 char hi[] = {'H', 'i', '\n', '\0'};
 int n = strlen(hi);
 printf("%d\n", n);
}

This prints 3, not 4

So the \0 marker isn't counted in the length

5

https://csijh.gitlab.io/COMS10008/lectures/strings/s4.c

s5.c

First marker taken
/* Demo: length of string */
#include <stdio.h>
#include <string.h>

int main() {
 char hi[] = {'H','i','\n','\0','L','o','\n','\0'};
 int n = strlen(hi);
 printf("%d\n", n);
}

This prints 3, not 7 or 8

So a string isn't an array of characters, a string is
contained in an array of characters

6

https://csijh.gitlab.io/COMS10008/lectures/strings/s5.c

s6.c

Random length
/* Demo: random length of string */
#include <stdio.h>
#include <string.h>

int main() {
 char hi[] = {'H', 'i', '\n'};
 int n = strlen(hi);
 printf("%d\n", n);
}

This prints 3, or 42, or a very big number, or crashes,
depending on what is in memory after the array

So a string is not valid or reliable without a \0 marker

7

https://csijh.gitlab.io/COMS10008/lectures/strings/s6.c

Characters
A char is an ASCII character, i.e. one byte (0..127)

It is just a small integer, e.g. 'a' is a synonym for the
number 97, and '\0' is a synonym for the number 0

Note that '0' is a synonym for 48, not 0

Use digit-'0' to convert a digit into a number, and
letter-'a'+'A' to convert a letter to upper case

8

International characters
Any character which is not in the American ASCII set is
'international': in English, that's £, ©, ®...

UTF-8 is the 'magic' you need (see aside: characters)

Code printf("Cost: 10£ ...") works (with £
being two characters from C's point of view)

This works if your editor and terminal window are set
up properly

9

http://localhost:8080/COMS10008/asides/characters.html

Historical notes
The marker idea (instead of a length at the beginning)
was probably to save space when memories were tiny: it
involves an 'expensive' loop to find the length, and it
prevents strings from containing a \0 character

strlen and many other functions have rubbish names
because there used to be a 6-letter limit (now its 31)

C has a 'rule' that anything built-in takes one processor
instruction (ish) and anything longer needs a function,
so strlen is a function because it needs a loop

10

Documentation
To find the documentation for the strlen function,
type C strlen into Google

With luck, you find something like this:

#include <string.h>
...
size_t strlen(const char *str);

Sometimes the library to use (in this case string) is
not very explicit

11

Sizes
The declaration/signature/prototype for strlen is

size_t strlen(const char *str);

size_t is a synonym for a suitable integer type on
your computer for holding sizes, probably long

This does not work, because %d expects an int

printf("%d\n", strlen(hi));

12

Coercion
This is recommended

int n = strlen(hi);
printf("%d\n", n);

Technically, the definition of n involves a conversion
('coercion') from size_t to int

You are telling the compiler that you know the length
will be small enough to fit in an int

13

Const
The declaration for strlen is

... strlen(const char *str);

const means that the strlen function promises not
to change the string that you give it

14

Char pointer
The declaration for strlen, leaving out const is

... strlen(char *str);

char *str means that the argument variable str has
type char * which is 'pointer to character'

For most purposes, C treats 'array of characters' and
'pointer to the first character' the same, so read this as:

... strlen(char str[]);

15

Warning
In this unit, before getting to pointers, you can almost
always define strings as character arrays (char s[])

However, in documentation, books, tutorials, blogs, on
stack overflow, etc., pointer notation is used (char *s)

We will clear this up when we get to pointers

There is one place where you have to use pointer
notation, not array notation, even now, that is when
reading command line arguments in the main function

16

args.c

Main
...
int main(int n, char *args[n]) {
 for (int i=0; i<n; i++) {
 printf("Arg %d is %s\n", i, args[i]);
 }
}

Run this with ./args, ./args a, ./args a b

The args array holds the words you typed on the
command line, with args[0] being the program name,
probably expanded into a full file path

The explanation will come in a later chapter

17

https://csijh.gitlab.io/COMS10008/lectures/strings/args.c

Returning strings
For the time being, you can't write functions which
return strings

That's because we are using array notation, and C
doesn't allow raw arrays to be returned from functions

Later, using pointer notation, we will effectively be able
to return strings and arrays from functions

18

compare.c

Comparing strings badly
Try this:

...
int main() {
 char s1[] = "x";
 char s2[] = "x";
 if (s1 == s2) printf("Same\n");
 else printf("Different\n");
}

This prints out Different, because == means
'identical' not 'same contents'

Comparing contents involves a loop, so it's a function

19

https://csijh.gitlab.io/COMS10008/lectures/strings/compare.c

compare2.c

Comparing strings well
This works:

...
int main() {
 char s1[] = "x";
 char s2[] = "x";
 if (strcmp(s1,s2) == 0) printf("Same\n");
 else printf("Different\n");
}

strcmp returns 0 if the strings are the same, or a
negative or positive number if the first is earlier or later
in lexicographic order than the second

20

https://csijh.gitlab.io/COMS10008/lectures/strings/compare2.c

copy.c

Copying a string
/* Demo: copy a string */
#include <stdio.h>
#include <string.h>

int main() {
 char s1[] = "Hi\n";
 char s2[4];
 strcpy(s2, s1);
 printf("%s", s2);
}

strcpy(to,from) copies a string from one array to
another

21

https://csijh.gitlab.io/COMS10008/lectures/strings/copy.c

join.c

Joining strings
...
int main() {
 char s1[] = "Hi\n";
 char s2[] = "Lo\n";
 char s3[7];
 strcpy(s3, s1);
 strcat(s3, s2);
 printf("%s", s3);
}

strcat(to,from) joins from onto the end of to

The length of s3 could be calculated:

char s3[strlen(s1) + strlen(s2) + 1];

22

https://csijh.gitlab.io/COMS10008/lectures/strings/join.c

sprint.c

Printing strings
...
int main() {
 char s1[25];
 sprintf(s1, "The square of %d is %d", 37, 37*37);
 printf("%s\n", s1);
}

sprintf(s,...) prints into s, with other arguments
the same as printf

You can use snprintf(NULL,0,...) (C11) to
precalculate the length

23

https://csijh.gitlab.io/COMS10008/lectures/strings/sprint.c

Challenges
One of the main challenges of C, compared to other
languages, is that it has:

undefined behaviour
unspecified behaviour
implementation-defined behaviour
locale-specific behaviour

See appendix sections J.2, J.1, J.3, J.4 in the C11 standard
for details

24

Undefined behaviour
The program is technically incorrect, but the platform
(compiler plus run time system plus libraries etc.) may
not detect it, and the result is unpredictable

The program may do the right thing, or some random
wrong thing, or crash

Example: accessing a char past the end of a string

25

Unspecified behaviour
The program is technically incorrect, the standard says
the platform has a limited choice of what to do, but the
programmer has no official way of finding out what is
chosen so must still avoid the situation

Example: accessing a local variable before it has been
initialised

The standard says some value must be provided

26

Implementation-defined
The program is technically correct, the standard says
the platform has a limited choice of what to do, and that
choice is supposed to be documented

Examples: handling of international UTF-8 text, whether
stdout is buffered, whether char is signed or not,
how many bits int and long have (beyond 16/32)

Nobody knows where to find this documentation!

So if you can't avoid these things, or test them in the
program, you need to document the assumptions your
program makes

27

Locale-specific
The program is technically correct, but the behaviour
depends on where in the world you are

Examples: the default human language, money,
timezones

The platform is required to provide information about
the locale to your program

But the user may need to set up the environment
properly for this to work, so you need to provide user
documentation

28

