
Statements

1

2

The four laws of programs
These are like Isaac Asimov's 4 laws of robotics:

0: programs must work properly
1: programs must be readable, provided this does
not conflict with the previous law
2: programs must be compact, provided this does
not conflict with the previous laws
3: programs must be efficient, provided this does
not conflict with the previous laws

3

http://www.thrivenotes.com/the-four-laws-of-robotics/

What statements do

A statement in a function tells the computer to do
something

4

grade.c

Example: grade
/* Find the grade for a mark. */
#include <stdio.h>

int grade(int mark) {
 int grade;
 if (mark >= 70) grade = 1;
 else if (mark >= 50) grade = 2;
 else if (mark >= 40) grade = 3;
 else grade = 4;
 return grade;
}

int main() {
 printf("My grade is %d\n", grade(66));
 return 0;
}

5

https://csijh.gitlab.io/COMS10008/lectures/statements/grade.c

Compiling and running
To compile and run in a terminal window:

$ clang -std=c11 -Wall grade.c -o grade
$./grade
2
$

6

grade.c

Scope
Each name has a limited scope

int grade(int mark) {
 int grade;
 ...
}

The scope of the local integer variable grade is the
function body, between the curly brackets

It temporarily hides the global grade function

7

https://csijh.gitlab.io/COMS10008/lectures/statements/grade.c

grade.c

Declarations and definitions
Things can be declared first, then defined later

int grade;
...
grade = 1;

The statement int grade; declares the variable
without defining it

The assignment grade = 1; defines it later

8

https://csijh.gitlab.io/COMS10008/lectures/statements/grade.c

Function declarations
You can also declare functions before defining them

int grade(int mark);

int main() {
 ...
}

int grade(int mark) {
 ...
}

This is to tell the compiler about functions defined (a)
later or (b) in other modules (often via header files)

These declarations are called signatures or prototypes

9

grade.c

Decisions
Simple decisions can be made using if and else

if (mark >= 70) grade = 1;
else if (mark >= 50) grade = 2;
else if (mark >= 40) grade = 3;
else grade = 4;

10

https://csijh.gitlab.io/COMS10008/lectures/statements/grade.c

11

max.c

Example: Sort
/* Sort two numbers. */
#include <stdio.h>

// Sort two numbers into ascending order and print
int main() {
 int a = 42, b = 21;
 if (a > b) {
 int save = a;
 a = b;
 b = save;
 }
 printf("%d %d\n", a, b);
 return 0;
}

With no arrays yet, it is difficult to sort lots of things,
or separate the calculation from the input/output

12

https://csijh.gitlab.io/COMS10008/lectures/statements/max.c

Blocks
An if statement can be followed by a block

if (a > b) {
 int save = a;
 a = b;
 b = save;
}

else is optional - the default is 'else do nothing'

A block is a sequence of statements between curly
brackets, the same as a function body

The scope of save is the block - it doesn't exist outside

13

max.c

printf
Use %d in printf to print out ints

 printf("%d %d\n", a, b);

14

https://csijh.gitlab.io/COMS10008/lectures/statements/max.c

max.c

Variables
An int variable in C is a 'box' with an integer in it

int a = 42;
...
a = b;

A variable can be re-used by putting different numbers
in the box

Swapping needs a third variable because after a = b
the old number in a has been forgotten

15

https://csijh.gitlab.io/COMS10008/lectures/statements/max.c

Incrementing
In C, you often see this:

n = n + 1;

As an equation, it is unsolvable, as an executable
definition, it defines n as an infinite loop

But in C, the = operator means "becomes"

So this means "get the number out of the box called n,
add one to it, and put the result back in the box n,
throwing away the old number"

In other words, increase n by one, also written as n++

16

Tracing
An important skill is to be able to trace execution in
your head, or on paper, or with a tool like gdb

 a b save
 42 21 ?
 int save = a;
 42 21 42
 a = b;
 21 21 42
 b = save;
 21 42 42

Use gdb only in emergencies, otherwise it soaks up too
much time - judicious printfs are usually better

17

18

Constants
If you are writing a chess program, the constant 8 is
likely to appear all over the place in your program

... for (i=0; i<8; i++) ...

Even though you will probably never want to change it,
it makes programs more readable to give it a name

const int size = 8;
... for (i=0; i<size; i++) ...

const doesn't mean constant, just "check that the
variable is never explicitly updated"

19

Global constants
It is possible to define a constant outside of any
functions, so that it is available everywhere:

#include ...
const int size = 8;
int doSomething() { ... size ... }
int main() { ... size ... }

This is not as bad as global variables (which we are
going to avoid) but it is restrictive (e.g. prevents
multiple boards of different sizes) and unnecessary (as
we will see when we reach structures)

20

Const arguments
It is possible to declare arguments as const:

int grade(const char mark[]) { ... }

This only applies to pointer and array arguments where
the function could make changes to the original

It documents the fact that the function will not in fact
change the argument, and the compiler checks

Doing this is optional (especially if it causes restrictions
elsewhere)

21

Const order
Technically, the keyword const comes after the thing
you want to be readonly (except that it can come before
if it is the first thing)

So some programmers always put const after, e.g.

int grade(char const mark[]) { ... }

In more complex situations, it matters (e.g.
char const * means pointer to read-only characters,
char * const means read-only pointer to characters,
char const * const means read-only pointer to
read-only characters)

22

Enumerated constants
Another way of defining constants is enumeration:

enum { First, Second, Third, Fail };

This is (almost) the same as:

const int First=0, Second=1, Third=2, Fail=3;

These are integer constants, and enum is most often
used where it doesn't matter what the constants are

It is very common (but not necessary) to use capital first
letters, or all-capitals, for the names of constants

23

Example
A grade program might contain:

...
if (mark >= 70) grade = First;
...
if (grade == First) printf("First");
...

The constant First has been used as a code for a
concept, without ever caring what its value is

24

Values
You can set the values of some or all of the constants:

enum { First=1, Second=2, Third=3, Fail=4 };

Or, you can write code which takes advantage of the
fact that the constants are successive integers

enum { Mon, Tue, Wed, Thu, Fri, Sat, Sun };

int next(int day) {
 if (day == Sun) day = Mon;
 else day = day + 1;
 return day;
}

25

Switch
switch (day) {
case Mon: ... ; break;
case Tue: ... ; break;
...
case Sat: case Sun: ... break;
default: ... ; break;
}

A switch is a direct jump, more efficient than sequential
tests

Beware: (a) don't forget the break ('fall through') (b) no
agreement on indenting (c) can make functions big:
consider one line per case, maybe a function call

26

Enum versus const
One difference between enum and const is that an
enum is always an int (or something compatible like
char) whereas a const can be any type

Another difference is that an enum can be used in a
switch statement, but a const int can't

That's because const means readonly, not constant, e.g.
a temperature reading from a device might be declared
const, to prevent the program from updating it

27

Isolated constants
Sometimes, enum is used to define isolated constants,
not sequences:

enum { size=8 };
enum { Width=80, Height=24 };

The advantage over using const is that the compiler
knows that they are truly constant, and can optimize
better or allow them to be used in some special contexts

28

Enumerated types
You can pretend that an enumeration is a different type:

enum Grade { First, Second, Third, Fail };
...
enum Grade grade = First;

The type enum Grade is just a synonym for int, but
the code may be more readable, by making intentions
clearer

29

30

countdown.c

While loops
A while loop allows code to be repeated: it is basically a
conditional backward jump in the code

/* Print a countdown. */
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <stdio.h>

int main() {
 int t = 10;
 while (t >= 0) {
 sleep(1);
 printf("%d\n", t);
 t = t - 1;
 }
 return 0;
}

31

https://csijh.gitlab.io/COMS10008/lectures/statements/countdown.c

Portability
C claims to be portable, not platform independent

To go beyond the minimal standard libraries, you need
to find libraries which are available across platforms

For coursework, don't use platform specific libraries, e.g.
#include <windows.h>

You can use the Posix cross-platform libraries, e.g.
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>

32

Abbreviations
There are increment and decrement abbreviations:

n++; means n = n + 1;
++n; means n = n + 1;
n--; means n = n - 1;
--n; means n = n - 1;

m = n++; means m = n; n++;
m = ++n; means n++; m = n;

n = n++; is a bug

Use ++ sparingly, and avoid the bug n = n++;

33

34

root.c

Example: square root
Here's a square root function

// Find square roots (like sqrt).

double root(double x) {
 double r = x / 2.0;
 double eps = 1e-15;
 while (fabs(r - x/r) > eps) {
 r = (r + x/r) / 2;
 }
 return r;
}

35

https://csijh.gitlab.io/COMS10008/lectures/statements/root.c

double
The double type is usually used for floating point

It is stored in 8 bytes, has about 15 decimal significant
digits of precision, and has a range of about ±10±308

When compactness is needed and precision/range
requirements are low, e.g. graphics, you can use float

A double is not exact, even 0.1 can't be stored exactly
- try printf("%.18f\n", 0.1);

Errors accumulate at an average rate of sqrt(n) for n
operations, when there is no bias (rounding alternates)

36

root.c

Newton's algorithm
The algorithm is essentially Newton's:

r = (r + x/r) / 2;

If r is less than the real root, then x/r is greater, and
vice versa, so the average is a better approximation, and
the gap tells you how close you are

It is easy to understand, convergence is rapid (faster
than halving the gap) but libraries use even faster
special-purpose techniques

37

https://csijh.gitlab.io/COMS10008/lectures/statements/root.c
https://en.wikipedia.org/wiki/Newton's_method

Edge cases
One edge case is when x = 4.0

Then the initial guess is exactly correct

A while loop is repeated 0 times if the test starts false:

r = 2;
while (r != 2) {
 ...
}

This is almost always what you want, and minimizes
edge cases

38

For loops
The countdown loop could be rewritten like this:

int t;
for (t = 10; t >= 0; t--) {
 ...
}

It is completely equivalent to

int t = 10;
while (t >= 0) {
 ...
 t--;
}

It gathers the three pieces into one place

39

Another for loop
Here is another variation, and its equivalent:

for (int t = 10; t >= 0; t--) {
 ...
}

{
 int t = 10;
 while (t >= 0) {
 ...
 t--;
 }
}

The outer block limits the scope of t

40

Stylised for loops
Because of their logical complexity, you should only use
for loops in a few familiar stylised special cases:

for (int i = 0; i < n; i++) ...

for (int i = n-1; i >= 0; i--) ...

for (item *p = list; p != NULL; p = p->next) ...

The last example, scanning a linked list, we'll see later

If your situation isn't a simple one like these, it is
probably better to use a while loop

41

Expression statements
Sometimes you want to evaluate an expression (with
side effects) and there is no result or you don't need it:

n++;
printResults();

The first is an increment, where you don't need the
value of n for anything

The second is a function call, where nothing is returned,
or you don't need the returned value

42

Do and goto statements
There is a do..while loop, with the test at the end,
where the loop is always executed at least once

It's visually and semantically confusing - don't use it

There is a goto statement (left over from long ago) -
don't use it

43

Clever functions
Kernighan (co-inventor of C) said “debugging is twice as
hard as writing the code in the first place - therefore, if
you write the code as cleverly as possible, you are not
smart enough to debug it”

So it is important to avoid writing functions which are
'too clever'

A good strategy is to write a function as if you are going
to have to prove that it is correct

Functions which are logically simpler are usually also
intuitively simpler, and more likely to be correct

44

45

Controlled jumps
The more your code jumps about, the harder it is to
debug

So it pays to make the jumps as controlled as possible

Function calls, if statements, and loops are the most
controlled statements

The statements in the next few slides should be used
'sparingly', i.e. not at all, or restricted to a few familiar
stylised special cases

46

Early return
The return statement doesn't have to be at the end

int abs(int n) {
 if (n >= 0) return n;
 return -n;
}

No else needed here - if n>=0, execution returns
from the function before reaching the second line

One stylised use is to dispose of an exceptional case, and
avoid an extra indent for the general case

The disadvantage is it may be unclear what property
holds on return, or how to add extra end-code

47

Early loop exit
The break statement exits from a loop early:

// Search for first prime in a range
while (i < last) {
 if (isprime(i)) break;
 i++;
}

Again, it can help to separate special cases from the
general case, without mangling the general case

Searching is the most common use

One disadvantage is that the loop can end while the test
expression is still true

48

Searching
Programmers often say they must use break for
efficient searching, to avoid unnecessary work

But, arguably, it is logically clearer and cleaner to write

// Search for first prime in a range
while (i < last && ! isprime(i)) {
 i++;
}

Now the test tells you exactly what must be true each
time round the loop, and false when it ends (making it
easier to prove correctness)

49

Early loop restart
The continue statement restarts a loop early:

// process the even numbers
for (int i = 0; i < n; i++) {
 if (odd(i)) continue;
 ...
}

Some people would say that using an if..else inside a
loop is always better than using continue

50

Commas
What if you want to print things out with commas?

The number of commas is one less than the number of
times round the loop

There are solutions using break or continue, but my
favourite is:

// print s, n times with commas
for (int i = 0; i < n; i++) {
 if (i > 0) printf(", ");
 printf("%s", s);
}
printf("\n");

51

Double loop search
What if you have a search involving a double loop?

// Search for table entry
for (r = 0; r < m; r++) {
 for (c = 0; c < n; c++) {
 if (table[r][c] ...) ...
 }
}

You can't use break, because it only breaks out of the
inner loop, not the outer one

Some programmers say this is the sort of exception
where you must use goto, but don't do it!

52

Extra loop variable
A good readable approach to the problem is to use an
extra variable

// Search for table entry
bool found = false;
for (r = 0; r < m && !found; r++) {
 for (c = 0; c < n && !found; c++) {
 if (table[r][c] ...) found = true;
 }
}

53

The ternary operator
There is one operator in C which has three arguments
instead of the usual one or two

It has the form t ? x : y and is equal to x or y
according to the test t:

int max = m > n ? m : n;
int abs = n >= 0 ? n : -n;

It is the same as the Haskell feature
if..then..else.., but it should be used more
'sparingly' than in Haskell

See list of operators

54

https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Feature creep
Examples where the advice is "don't use" or "use
sparingly" illustrate that adding features to a language is
not necessarily a good idea

But inevitably features do get added (C has resisted
more than most)

This tendency is called feature creep, and partly
explains why languages go out of fashion

55

