
Sorting

1

Sorting
Sorting is a very common operation

Suppose you have an array to sort into ascending order:

int ns[] = { 8, 2, 6, 5, 9, 1, 7 };

Of course you can sort this array by hand

But suppose it isn't constant, and needs to be sorted at
run-time

2

Algorithms
There are lots of algorithms for sorting

We will look at a few of the well designed ones (that
means excluding the terrible bubble sort algorithm!)

3

https://en.wikipedia.org/wiki/Sorting_algorithm

Swapping
To make code clearer, let's assume we have a swap
function:

void swap(int array[], int i, int j) {
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
}

(It can be made efficient by inlining)

4

Selection and insertion
The selection and insertion sort algorithms are the
simplest well-designed algorithms

They use simple recursion (either do some work then
sort n-1 items, or sort n-1 items then do some work)

Selection: select the smallest/largest then sort the rest

Insertion: sort all but one then insert it

5

Recursive selection sort
The recursive version makes the design clearer

It is slightly more convenient to select the largest and
put it in the last place array[n-1]

// Sort the first n items of an array
void sort(int n, int array[]) {
 if (n <= 1) return;
 for (int i = 0; i < n-1; i++) {
 if (array[i] > array[n-1]) swap(array, i, n-1);
 }
 sort(n-1, array);
}

6

Iterative selection sort
Here's an iterative version, as a double loop:

void sort(int n, int array[n]) {
 for (int m = n-1; m > 0; m--) {
 for (int i = 0; i < m; i++) {
 if (array[i] > array[m]) swap(array, i, m);
 }
 }
}

This is, of course, O(n^2)

It is useful as a specification for other sorting algorithms

7

Recursive insertion sort
The recursive version makes the design clearer

// Sort the first n items of an array
void sort(int n, int array[]) {
 if (n <= 1) return;
 sort(n-1, array);
 int x = array[n-1];
 int i = n-1;
 while (i > 0 && array[i-1] > x) {
 array[i] = array[i-1];
 i--;
 }
 array[i] = x;
}

8

Iterative insertion sort
The iterative version is a double loop:

void sort(int n, int array[n]) {
 for (int m = 1; m < n; m++) {
 int x = array[m];
 int i = m;
 while (i > 0 && array[i-1] > x) {
 array[i] = array[i-1];
 i--;
 }
 array[i] = x;
 }
}

This is, of course, O(n^2)

9

Importance
Insertion sort is almost unbeatable for small arrays

And almost unbeatable for arrays which are almost in
order already

So is often used in libraries as a last fine-grained pass to
speed up more complex algorithms

10

Divide and conquer
A general recursive design technique is to split a
problem into two half-sized problems

That leads to two divide-and-conquer algorithms, sort
two smaller arrays, and either do some work first, or do
some work afterwards:

Quicksort: divide the items into small and large, then
sort the two divisions

Mergesort: sort the first half and second half, then
merge the two results together

11

Pivot
Partitioning means dividing into small and large
sections, i.e. <=p and >p for a pivot p

There is a chicken and egg problem: you can only find
the perfect pivot after you have done the partitioning

Choosing the first or last item as the pivot is very poor
on arrays that are almost in order already

The next simplest choice is the middle item

12

Partitioning
Here's a function that partitions an array between
positions lo and hi, and returns the dividing index:

int partition(int array[], int lo, int hi) {
 int p = array[lo + (hi-lo)/2];
 while (true) {
 while (array[lo] <= p) lo++;
 while (array[hi-1] > p) hi--;
 if (lo == hi) return lo;
 swap(array, lo, hi-1);
 }
}

The version in Wikipedia when I wrote this slide was
incorrect!

13

Recursive quicksort
Here's a recursive quicksort

void sort(int array[], int lo, int hi) {
 if (lo >= hi-1) return;
 int mid = partition(array, lo, hi);
 sort(array, lo, mid);
 sort(array, mid, hi);
}

14

Iterative quicksort
You can make quicksort iterative, but you need a stack
of ranges which have yet to be sorted

The algorithm pulls a range off the stack, partitions, and
pushes the two smaller ranges on the stack, if they have
at least two elements

It is not worth showing you the code - ask google

15

Quicksort problems
Quicksort is one of the fastest known algorithms, very
difficult to beat

It has best case and average case O(n*log(n))
performance

But it is O(n^2) in the worst case, because partitioning
may split n items into unequal halves, e.g. 1 and n-1

When does speed really matter? In real time systems
where you can't be late, so ironically quicksort is not
used when time is critical!

And is often not used in modern language libraries

16

Mergesort problem
Mergesort needs a second array of the same size (well,
actually it doesn't, but without it, it becomes too
inefficient)

17

http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-04-05.pdf

Merge
Here's a merge function:

void merge(int array[], int lo, int mid, int hi, int other[]) {
 int i = lo, j = mid;
 for (int k = lo; k < hi; k++) {
 if (i < mid && (j >= hi || array[i] <= array[j])) {
 other[k] = array[i++];
 } else {
 other[k] = array[j++];
 }
 }
}

array[lo..mid] and array[mid..hi] are
already sorted and are merged into other[lo..hi]

It's O(n)

18

Recursive mergesort
Here's a recursive mergesort, which starts with the two
arrays being copies of each other:

void sort(int array[], int lo, int hi, int other[]) {
 if (hi - lo <= 1) return;
 int mid = lo + (hi-lo)/2;
 sort(other, lo, mid, array);
 sort(other, mid, hi, array);
 merge(array, lo, mid, hi, other);
}

A lot of copying is avoided by alternating the arrays
with the level of recursion

19

Iterative mergesort
Making mergesort iterative is easier than making
quicksort iterative

That's because the divisions between sections are
completely predictable

What you do is merge each pair of items from array
into other, then merge each pair of runs of length 2
from other into array, then merge each pair of runs
of length 4 from array into other, and so on

20

Importance of mergesort
Mergesort is guaranteed to be O(n*log(n)) under all
circumstances

The extra memory required during the sorting is no
longer regarded as a big problem

So, it is suitable for real time programming

And also for interactive software, because people prefer
slightly slower but predictable-time algorithms

Some language libraries use mergesort for the long
runs, and insertion sort for the short ones, or equivalent

21

Other algorithms
The outcome of these algorithms is that you should
almost always use one of these four well-designed
sorting algorithms

There is perhaps one exception, which is when you
want an algorithm which is faster than O(n*log(n))

This is tough, because all algorithms based on
comparisons are at least O(n*log(n))

22

Radix sort
Suppose you have a million numbers to sort, and they
are all percentages 0..100

You create an array of length 101 to count how many
times each percentage appears, and run through the
numbers once, incrementing the counts, then
regenerate the list from the counts

That's an O(n) algorithm

It can be generalized to radix sort, which becomes
O(n*log(n)) if the number of 'digits' or 'characters' in the
numbers becomes O(log(n))

23

Strategy 1
What should you actually do if you want to do some
sorting? (Or almost anything else)

You know an algorithm for sorting, or you can work one
out, so you write a sorting function

This is a reasonable strategy for a lot of problems

But for sorting, it is time-consuming and error-prone,
and there is a better way

24

Strategy 2
You look up sorting in Google and copy some code, e.g.
you copy code from a wikipedia entry on sorting

You are much less likely to make logic errors this way,
and this is often a reasonable strategy

But it can be error-prone to translate the code into the
right form for your purposes, especially if it is written
in another language or in pseudo-code

For sorting, there is a better way

25

Strategy 3
You find a library or module which someone has
written, which is sufficiently generic to be adapted to
your purposes without changing it in any way, and you
download it and include it in your project

This is a good strategy, provided you check that the
author of the library is reliable, not just some show-off

But for sorting, we can do a bit better

26

Strategy 4
You find a standard library module which can be used
unchanged for your purposes

This is the best, when it works, because it is guaranteed
to be readily available, in an identical form, on every
platform

For sorting, there is a standard function in the stdlib
library module (specified in the C11 standard)

27

The qsort function
The function is called qsort

This is a poor name because qsort is an unnecessary
abbreviation for quicksort, left over from the days of
6-character variable names

It is a poor name anyway, because it is supposed to use
"the best general purpose sorting algorithm", which
could change, so it should have been called sort

28

The documentation
If you look up the documentation (by typing C qsort
into Google) you find this declaration:

void qsort(
 void *base,
 size_t nitems,
 size_t size,
 int (*compar)(const void *, const void*)
);

It is poorly written - I've neatened the layout

It is not easy to understand - it uses features we haven't
fully covered

29

The first argument
The first argument is:

void *base,

This is the array, passed by pointer, i.e. passed as a
pointer to the first element

The type of the pointer is void *, which means the
function is generic and will accept any type of array

30

The next two arguments
The next two arguments are:

size_t nitems,
size_t size,

The first is the length of the array, and the second is the
size of each item in the array in bytes

The size_t type means "the most efficient type for
representing sizes on your computer"

There shouldn't be any problem in passing ints

31

The last argument
The last argument is:

int (*compar)(const void *, const void*)

This says compar instead of compare because C
variable names used to be limited to 6 characters

The type void * is written inconsistently, and the
argument names have been left out

This uses const and function pointers, and means that
we have to write a compare function and pass a pointer
to it to qsort

32

Writing a compare function
Here's a suitable compare function:

int compare(const void *p, const void *q) {
 const int *pi = p, *qi = q;
 return *pi - *qi;
}

It has to have exactly the signature specified

It compares two ints, which are passed by pointer
(because qsort didn't know their size when it was
compiled)

33

const arguments
The arguments are declared as const which means the
function has to promise not to change the integers
pointed to

The statement const int *pi = p just copies the
void pointer into an int pointer (probably without
generating any code)

The variable pi needs to be declared as const in order
to continue to promise not to change the ints

34

The return value
The function returns *pi - *qi which just subtracts
the two ints

If you read the documentation you discover that the
function only has to return negative, zero or positive
(like strcmp for example) and not -1 0 1

It is normal to just subtract

35

sort.c

The call
The call to qsort is like this:

int ns[] = { 8, 2, 6, 5, 9, 1, 7 };
int itemSize = sizeof(int);
int length = sizeof(ns) / itemSize;
qsort(ns, length, itemSize, compare);

As with arrays, if you pass a function as an argument, it
is automatically converted into a pointer, e.g. compare
is treated as if you had written &compare

36

https://csijh.gitlab.io/COMS10008/lectures/sorting/sort.c

Function pointers
You can use function pointers in your own programs in
a much more readable way than most tutorial writers
seem to think

Imagine that you have a calculator, and an enumerated
type {Plus, Minus, Times, Over} represent the
four basic operators +, -, *, /

You can use an operator constant to index an array of
four function pointers

How readable can you make this?

37

The function type
All the functions must have the same type, which you
can describe using a typedef:

typedef int op(int x, int y);

This looks just the same as a normal function
declaration, but it defines a type op, instead of declaring
a function

The type describes functions, not function pointers

38

calc.c

The array
Then you can define an array of function pointers:

op *ops[] = { add, sub, mul, div };

int main() {
 op *f = ops[Times];
 int n = f(6, 7);
 printf("Answer = %d\n", n);
}

When you make a call on a function pointer, C
automatically dereferences it

Overall, the result is quite readable

39

https://csijh.gitlab.io/COMS10008/lectures/sorting/calc.c

