
Search

1

2

Searching
Searching is a basic problem in computing

We will look at the binary search algorithm

Most computer scientists think it is trivial, because
we've absorbed it into our bloodstreams, and it is the
basis of a lot of other ideas

But while we are looking at how to do it, quite a few
general issues from computer science will arise

3

Example problem
Suppose we have an array of letters like this:

And suppose we want to find where the letter 'c' is

4

Issue: numbers
One issue that the example problem raises is that
computing is not all about numbers, it is about handling
all sorts of data

The example is the same as the one in the wikipedia
entry on the binary search algorithm, except that the
article uses numbers, giving the wrong impression

Numerical programming is a minority interest - how
many numerical apps do you know?

5

Issue: data as numbers
On the other hand, numerical programming was the
starting point for computer science

And numerical operations are what processors provide,
and almost all key programming areas need them, e.g.
graphics

In the example problem, the letters are sorted, which
involves comparing them as numerical codes ('a' is
stored as character code 97, 'b' as 98, and so on)

6

Issue: avoiding numbers
Programs shouldn't use numbers unnecessarily

For example, knowing that 'a' is 97 and 'A' is 65,
you could convert a letter to upper case by:

ch = ch - 32;

But you can do it more readably, without the "magic"
number:

ch = ch + ('A' - 'a');

Trust the compiler to optimise

7

Linear search
Probably the simplest solution is:

int search(char ch, int n, char a[n]) {
 int result = -1;
 for (int i=0; i<n; i++) {
 if (a[i] == ch) result = i;
 }
 return result;
}

Returning -1 for an unsuccessful search is a slight
cheat, but extremely common (alternatives are having
two return values, or using an exception - but C doesn't
make either of them easy)

8

Issue: simplicity
The linear search solution illustrates a simplicity issue:
sometimes simplest is best

The linear search algorithm is best if (a) correctness is
the most important thing or (b) speed of programming
is the important thing or (c) the problem is so small that
the linear approach is actually the fastest

The moral is: start simple, and only make things more
complicated later if you need to

9

Early return
The linear search can be speeded up by stopping early:

int search(char ch, int n, char a[n]) {
 for (int i=0; i<n; i++) {
 if (a[i] == ch) return i;
 }
 return -1;
}

This has hidden complexity: (a) the for statement says
its going to run through all the indexes, but that's a lie
and (b) the function returns from two different places

10

Logical simplicity
We've seen that some programmers think it is better to
write this, which has no hidden complexity:

int search(char ch, int n, char a[n]) {
 int result = -1;
 bool found = false;
 for (int i=0; i<n && ! found; i++) {
 if (a[i] == ch) {
 result = i;
 found = true;
 }
 }
 return result;
}

11

Issue: optimisation
Stopping a search early is a small optimisation (though a
natural one)

When should you optimise?

12

Optimisation rules
Things you should know about optimisation are:

Bottlenecks: slow speed is almost always due to a
bottleneck (so it is not a good idea to try to make every
part of your program fast)

Measurement: guesses about where bottlenecks are
usually wrong, so find out by measuring

Optimise last: that means it is best to put correctness
and readability first, and do optimisation last

13

https://en.wikipedia.org/wiki/Bottleneck_(software)

Can we do better?
Is there a better way to solve the searching problem?

If you wanted to look up a word in a printed dictionary,
would you go through each page one by one?

No - you would open the dictionary in the middle, work
out which half your word was in, and then repeat the
halving process

14

The binary search algorithm
This algorithm is poorly named, because it doesn't have
much to do with binary, except for a vague "twoness"

A better name is "interval halving search"

The idea of the algorithm is: when searching in a sorted
array, repeatedly halve the range that you are looking in

15

How difficult?
The idea of the algorithm is easy, but the devil is in the
details

It is easy to program, but also easy to get wrong

It has been said that most professional programmers and
most textbooks get it wrong (because it is natural to
program partly by logic and partly by trial and error)

Let's look at what it takes to get it right

16

Loop invariant
As we go round the loop, what do we keep track of?

The answer is indexes start and end which represent
the range we have narrowed the search down to

But does this mean "the item might be at an index from
start to end inclusive" or "the item is between
positions start and end", i.e. are we counting or
measuring the array?

We must choose one, stick to it, and not get confused

17

Getting started
I'm going to choose measuring (unlike Wikipedia)

int search(char ch, int n, char a[n]) {
 int start = 0, end = n;
 ...
}

18

Loop end
When does the loop end?

Either when the item we look at is the one we want, or
if the range has nothing left in it

int search(char ch, int n, char a[n]) {
 int start = 0, end = n;
 bool found = false;
 while (! found && end > start) {
 ...
 }
}

19

Issue: pointers
In the early days of computing, it would have been
regarded as better (more efficient) to use pointers than
index numbers for the range

But now we think (a) indexes are better for humans,
making correctness more likely and (b) indexes are
better for the compiler, because there are more
possibilities for optimising

20

Middle choice
Within the loop, we are going to look at the middle
element

The middle is the average of start and end

int mid = (start + end) / 2;

The integer division handles the case when there isn't
an exact middle element, which is fine

But is this the right way to find the average?

21

Overflow bug
This line has an overflow bug

int mid = (start + end) / 2;

If start and end are around a billion, the addition
may go over the 2-billion limit on int

Is it possible to avoid the overflow bug? Yes!

int mid = start + (end - start) / 2;

Now the program works over the whole range of int

22

Issue: cockroaches
Some people would say this isn't an important bug,
because it is unlikely that a user will have an array of
size over a billion

But a better point of view is that this is the worst
possible kind of bug (a cockroach?)

Testing doesn't detect it, and it is too rare to get
reported, so it survives forever, waiting to bite

23

search.c

Loop test
We can finish off the function:

int search(char ch, int n, char a[n]) {
 int start = 0, end = n, mid;
 bool found = false;
 while (! found && end > start) {
 mid = start + (end - start) / 2;
 if (ch == a[mid]) found = true;
 else if (ch < a[mid]) end = mid;
 else start = mid + 1;
 }
 return found ? mid : -1;
}

24

http://localhost:8080/COMS10008/lectures/search/search.c

Visualise
You should visualise, and test, some searches, including
failures - searching for 'c' looks like this:

25

Issue: optimisation
Many programmers would instinctively try to optimise
by making only one test (<= or >, say) instead of two,
and check equality at the end after finding the item

this is less symmetrical, so more liable to error
a common error is an occasional infinite loop
because the range doesn't decrease
there is only an improvement if there are a
quintillion items, way beyond int, i.e. never

26

Issue: precision
This chapter illustrates that woolly programming is
useless - you need to think or draw pictures to get your
head straight before programming

It also illustrates that trial-and-error programming in
general is useless - it doesn't get to the right answer
and, like evolution, it is slooooow

As a programmer, you need to be aiming for 100%
precision

But it's not quite as hard as it sounds, because the
computer itself helps you to get there

27

Issue: automated testing
There are various techniques you can use to program
better, but in the end, you can only achieve precision by
proof or testing

Most of the time, proof is too expensive (and difficult),
so the heart of good development is testing

Testing is potentially boring, but whenever anything is
boring, the computer should be doing it, so what you
want is automated testing

That is the first sign of a developer, rather than just a
programmer

28

Linear time
Linear search takes some constant time to get started,
plus some constant times n steps, i.e. a + b * n

The constants depend on the computer, the language,
the compiler etc. - impossible to estimate

So we ignore the constants and say that it takes O(n)
time ("big O of n time" or "order n time" or "linear time")

This is called "big O notation" or "computational
complexity"

29

Log time
For binary search, the time is the number of times you
have to halve n

If n=2,4,8,16,32,64,128,256,512,1024, you can halve it
1,2,3,4,5,6,7,8,9,10 times

This is the "logarithm to base 2" of n, i.e. what power of
2 makes n

Logs with different bases only have constant factor
differences, so we just write O(log(n)) for the time
binary search takes

30

Graphs
If you like graphs ('charts') go to graphsketch.com and
put in f(x)=x and g(x)=5*log(x)

The 5* is a wild guess representing the extra logical
complications of the binary search algorithm

31

http://graphsketch.com/

Graphs
For small numbers, the difference is negligible:

32

Graphs
For big numbers, the difference is 'infinite':

33

Issue: design
Although little optimisations should be left to the end, if
done at all, optimisations which change the order of
efficiency may be important

What they depend on most is the overall design of the
program, before you start writing it

So the last word on optimisation is "design efficiency in,
but don't sweat the small stuff", i.e. pay attention to
design efficiency, but not code efficiency

34

