
Pointers

1

2

Three chapters
This chapter is about what pointers are

The next (objects) is about how to use pointers to pass
data around in programs

The one after (memory) is about how to use pointers to
manage memory in programs

3

What are pointers for?
A pointer allows you to store something such as a string
or array that has a different size at different times

And it is used with dynamic allocation, to allow an
item's lifetime to be more flexible than the duration of a
single function call

4

Memory
A computer's memory is an array of bytes:

You can pick out one byte using its index

That's called the address of the byte

In C, you can assume that addresses are always byte-
based (not bit-based or word-based)

5

Multi-byte values
Suppose a section of memory holds ints

The address of an int is still a byte-address

Int addresses go up in 4's (assuming 4-byte ints)

But if the ints form an array, you want to index it by
0,1,2..., not 0,4,8...

6

Pointers
A pointer is an address in memory, together with the
type and size of the item stored at that address

The type of a pointer to an int is int * ('int pointer')

C gives you direct and total access to pointers, but
without worrying about exactly what the addresses
actually are

A pointer has 4 bytes (on a 32-bit system) or 8 bytes (on
a 64-bit system, to beat the 4Gb limit)

7

Pointer variables
Pointers can be stored in memory, in variables

int i, j, k;
int a[3];
int *p;

p is declared to be of type int * and must point to the
beginning or end of an actual int in memory

For example, p could point to the location of i or of j
or of k, or to any of the elements of the array a, or to
the end of the array

Suppose p is made to point to k

8

Picturing pointers
It is important, when programming or debugging, to
create pictures of pointers, in your head or on paper

We don't know how memory is allocated, so the picture
of p pointing to k could equally well be

9

Picturing pointers
Since we don't know (and don't need to know) where
things are located in memory, we often picture them
'randomly' scattered:

10

Poor notation
Should you write int *p or int* p ?

In the first case, beware that int *p = x; means
int *p; p = x; even though it looks like
int *p; *p = x;

In the second case, beware that int* p, q; means
int* p; int q; even though it looks like
int* p; int* q;

It is a no-win situation, so let's follow the most common
convention and write int *p

11

Reason for notation
Why are C's types written in this way?

With pointers, types can get very complicated, and the
designers wanted types to be written the same way
round as the operations performed on the variables, not
the opposite way round

A declaration is written as an example of using the
variable, plus the basic type you reach at the end

So int *p means "p is a variable to which you can
apply the * operator, and then you reach an int"

12

Pointer arithmetic
If a pointer variable p of type int * points to an int,
then the expression p+1 points one int further on

For example, if p points to a[1] then p+1 points to
a[2]

The C compiler uses the knowledge of the type of the
item which a pointer points to, and its size, to make the
arithmetic as convenient as possible

If you need to know a size (in bytes) yourself, apply the
sizeof() pseudo-function to a variable or a type

13

Two operators
The & operator takes a variable, and creates a pointer to
its memory location

The * operator takes a pointer, and follows it to find the
value stored at that memory location

These go in 'opposite directions' along the pointer

14

pointer.c

The & operator
The & operator creates a pointer to a variable

/* Print a pointer. */
#include <stdio.h>

int main() {
 int n;
 int *p = &n;
 printf("pointer %p\n", p);
}

The expression &n is often read "address of n", even
though it should really be "pointer to n"

15

https://csijh.gitlab.io/COMS10008/lectures/pointers/pointer.c

value.c

The * operator
The * operator finds the value which a pointer refers to

/* Print a value. */
#include <stdio.h>

int main() {
 int n = 42;
 int *p = &n;
 printf("value %d\n", *p);
}

16

https://csijh.gitlab.io/COMS10008/lectures/pointers/value.c

NULL
One special pointer is provided in C, called NULL,
available from stdio.h for example

Don't confuse it with the null character, written '\0',
which is only one byte long

The NULL pointer is guaranteed to be unusable (it
points to location 0 which belongs to the OS)

It is used for uninitialised pointers, as an error indicator
for functions that return pointers, and so on

17

Deliberate segfault
Here's a deliberate segfault:

/* Demo: cause a segfault */
#include <stdio.h>

int main() {
 // Point to the beginning of the memory
 char *s = NULL;
 // Demonstrate that it doesn't belong to us
 s[0] = 'x';
}

18

