
Objects

1

What are objects?
C doesn't properly support object oriented programming

But it is reasonable to use the word object to mean a
structure or array, accessed using a pointer

This represents another step towards object oriented
programming

This chapter looks at what changes when structures and
arrays are handled using pointers

2

Strings
Compare these program fragments:

char s[] = "bat";

char *s = "bat";

These are nearly identical: extracting a character s[i]
is the same, printing is the same, comparing with other
strings is the same, ...

3

Differences
char s[] = "bat";

char *s = "bat";

the first version is less efficient for a long string
(it allocates more memory, and involves copying)
in the second version, s[0] = 'c' is illegal
(because s points to a constant string, probably in
read-only memory as part of the program)

So use the first version when the string might get
updated, otherwise it is a minor efficiency issue

4

Puzzle
What does this program do?

#include <stdio.h>
int main() {
 char *s1 = "cat";
 char *s2 = "cat";
 if (s1 == s2) printf("same\n");
 else printf("different\n");
}

5

Puzzle
What does this program do?

#include <stdio.h>
int main() {
 char *s1 = "cat";
 char *s2 = "cat";
 if (s1 == s2) printf("same\n");
 else printf("different\n");
}

Answer: it depends whether the compiler optimises by
noticing that it can reuse the same constant string

The important thing is that s1 == s2 is pointer
comparison

6

Passing arrays
Compare these functions:

void print(char s[]) { ... }

void print(char *s) { ... }

These are identical, because in the first version, the
array is passed by reference, i.e. by pointer

In other words, the compiler converts the first version
into the second

7

Returning arrays
Pointer notation allows us to return an array from a
function, which we couldn't do before:

char *show(int n) { // BAD
 char s[12];
 itoa(n, s, 10);
 return s;
}

This is illegal, with undefined behaviour, because the
array s disappears when the show function returns

You are returning a dangling pointer

8

https://en.wikipedia.org/wiki/Dangling_pointer

Returning arrays 2
This is OK, though:

char *min(char *s1, char *s2) {
 if (strcmp(s1, s2) < 0) return s1;
 else return s2;
}

The fact that newly allocated memory can't be returned
from a function is a serious restriction

A complex program might have to allocate lots of
memory in advance, without knowing how much is
going to be needed

We will sort this out when we get to malloc

9

Pointing into arrays
Pointers allow us to do this:

int *p = &a[i];

This allows us to handle subarrays, loop through arrays
using pointers (not necessarily recommended) and so on

10

main
When main has arguments, you might expect:

... main(int n, char args[n][]) ...

But then the strings must have the same length (say 10)
so if the program is called args, and you type ./args
a, you get:

11

Array of pointers
Instead, main is:

... main(int n, char *args[n]) ...

So args is an array of pointers to strings, which can
have different lengths but can be packed close together:

12

Other notations
You might also see:

... main(int n, char **args) ...

... main(int argc, char *argv[argc]) ...

... main(int argc, char *argv[]) ...

The first unnecessarily uses pointer notation twice

The second uses traditional (poor?) names ('argument
count' and 'argument vector')

The third leaves out the array size

13

Structs without pointers
Reminder: when you pass a struct directly to a function,
it is copied, so any updates have to be returned and put
back in the original structure:

struct bird move(struct bird b, ...) {
 ... b.x = ...
}
...
b = move(b, ...);

This is very fussy, so let's tidy it up

14

The struct keyword
Let's use typedef like before to get rid of the struct
keyword:

typedef struct bird bird;

bird move(bird b, ...) {
 ... b.x = ...
}

One-word type names seem more readable

(The only slight downside is that syntax colouring
editors and tools may not colour the type name nicely)

15

The return problem
If a function move updates the struct, then it is only
updating its local copy (in its local argument variable b)
so the updated struct has to be returned

bird jay;
...
jay = move(jay, ...);

It is incredibly easy to forget the "jay =" bit which
copies the updated struct back into the original variable

16

The copying problem
The fields in the struct are all copied across into the
function's argument variable, and then copied back into
the original (whether they have been updated or not)

This is inefficient

The inefficiency may matter for programs where structs
are passed around a lot, or where some structs are very
big (e.g. containing an array)

17

The solution
The answer is to pass structs around using pointers

Passing structs without pointers is very rare in real C
programming, so stop it at once!

There are some changes to the functions that get called,
and there are some changes to the calling functions

18

Changing called functions
A called function is passed a pointer to a struct:

void move(bird *b, ...) {
 ... b->x = ...
}

The function no longer needs to return the struct

It uses b->x to access fields, which is a shorthand,
which all C programmers use, for (*b).x

19

Local allocation
In calling functions, one strategy is to continue to
allocate structs as local variables

int main(...) {
 bird jaydata = { ... };
 bird *jay = &jaydata;
 ...
 move(jay);
}

Personally, I like to give the struct variable an obscure
name, e.g. ...data (to make sure that I don't use it by
accident) and to create a pointer variable with a nice
name for general use

20

Naming
In my opinion, this is inferior:

bird jay = { ... };
...
move(&jay);

It is far too easy to forget the &, and it doesn't match the
way that pointer variables are used elsewhere

It is the pointer which is the object and which deserves
the nice name

21

Returning
Never do this:

bird *newBird(...) { // BAD
 bird bdata = { ... };
 bird *b = &bdata;
 ...
 return b;
}

The memory for bdata disappears (to be reused by
other function calls) when the function returns, so you
are returning a dangling pointer again

22

https://en.wikipedia.org/wiki/Dangling_pointer

bird.c

Example
/* Passing structures using pointers */
#include <stdio.h>

struct bird { int x, y; };

// Move a bird by a given amount
void move(struct bird *b, int dx, int dy) {
 b->x = b->x + dx;
 b->y = b->y + dy;
}

int main() {
 struct bird jaydata = {41, 37};
 struct bird *jay = &jaydata;
 move(jay, 1, 5);
 printf("%d %d\n", jay->x, jay->y);
}

23

https://csijh.gitlab.io/COMS10008/lectures/objects/bird.c

