
Modules

1

Design
Big problems need to be broken down into smaller
subproblems

Big programs need to be broken down into smaller
pieces - modules

It pays to take some time to design the modules, e.g. by
scribbling on paper, before programming

2

program.c

Functions
Suppose we have a two-function program, defined and
compiled like this:

void print() { ... }
int main() { ... }

gcc -std=c11 -Wall program.c -o program

3

https://csijh.gitlab.io/COMS10008/lectures/modules/program.c

print0.c

main0.c

Multiple modules
Instead, we can put the functions in two files, and
compile like this:

void print() { ... }

void print();
int main() { ... }

gcc -std=c11 -Wall main0.c print0.c -o program

Each module needs declarations of the functions it uses
from other modules

4

https://csijh.gitlab.io/COMS10008/lectures/modules/print0.c
https://csijh.gitlab.io/COMS10008/lectures/modules/main0.c

Signatures and Types
Suppose we create a module with several functions

Other modules need to include declarations of those
functions

The same goes for declarations of types created by the
module

We don't want to repeat the list of declarations in lot's
of places, every time we want to use the module

5

print.h

print.c

main.c

Header files
So, make a header file for each module with the
module's declarations in it

void print();

void print() { ... }

#include "print.h"
int main() { ... }

gcc -std=c11 -Wall main.c print.c -o program

6

https://csijh.gitlab.io/COMS10008/lectures/modules/print.h
https://csijh.gitlab.io/COMS10008/lectures/modules/print.c
https://csijh.gitlab.io/COMS10008/lectures/modules/main.c

print.c

Own header
A good thing to do is for a module to include its own
header file:

#include "print.h"
#include <stdio.h>

void print() { ... }

Then the compiler checks that the declarations in the
header match the definitions in the .c file

7

https://csijh.gitlab.io/COMS10008/lectures/modules/print.c

Local functions
What if we want a function to be local to a module?

// Swap two items in an array
void swap(int array[], int i, int j) { ... }

// Sort an array of integers
void sort(int n, int array[n]) { ... }

In a sorting module, we would want to export sort,
but not swap which is a supporting function

8

Name clashes
Of course, we won't mention swap in the header

But that's not enough, because the function name swap
might clash with something else called swap in some
other module

The answer is to define swap as static:

static void swap(int array[], int i, int j) ...

void sort(int n, int array[n]) { ... }

static means local to this module

9

Extern
The opposite of static is extern

For functions, it is the default and you don't need it

It is only needed for global variables, which we are not
using in this unit

It is used to declare a global variable which is defined in
some other module - otherwise you can't tell the
difference between a declaration and a definition

10

#define
Programmers used to use #define to make functions
efficient:

#define twice(n) n+n
#define square(n) n*n

But this is dumb textual substitution, so twice(3)*2
becomes 3+3*2 giving 9 instead of 12

11

Brackets
The problem can be lessened by adding brackets round
the expression:

#define twice(n) (n+n)
#define square(n) (n*n)

But this is still dumb substitution, so square(2+3)
becomes 2+3*2+3 giving 11 instead of 25

12

More brackets
The problem can be lessened by adding more brackets
round the args:

#define twice(n) ((n)+(n))
#define square(n) ((n)*(n))

But this is still dumb substitution, so if read is a
function for reading a number then twice(read())
becomes read()+read() which calls read twice
instead of once

And this time there is no quick and dirty fix

13

Inline
The right solution in C11 is:

inline int twice(n) { return n+n; }
inline int square(n) { return n*n; }

This is a hint to the compiler to do inlining (though it
might choose not to if the optimisation level is low, and
it might do it anyway without the hint if the
optimisation level is high)

Inlining is intelligent substitution - it doesn't just save a
call, it enables further optimisations on the inlined code

14

Inline in headers
The compiler compiles each module independently, and
links afterwards

So it can only inline a function into its own module (the
one containing its definition)

So what if you want to inline a library function?

Answer: break the usual rule and put the inline
definition of the function into the library header

15

Cross-module inlining
Putting a function definition in a header is ugly - is
there a better way?

Yes, define the function as extern inline (extern
is needed to satisfy clang)

extern inline int twice(n) { return n+n; }

Then use the option -flto (link time optimisation)

16

Array list module
Suppose we implement array lists with

struct list {
 int length, capacity;
 int *items;
};
typedef struct list list;

And we add some nice functions, and put them in a
module

What should the header look like?

17

list.h

Array list header
The list header should be:

struct list;
typedef struct list list;

list *newList();
add(list *ns, int n);
print(list *ns);

The declaration struct list tells other modules
that there is a list structure, but not the fields inside it

It is just like a function declaration (how to access, but
no internals)

18

https://csijh.gitlab.io/COMS10008/lectures/modules/list.h

list.h

list.c

Opaque types
This:

struct list;

is called an opaque type because you can't see inside it

list.c fills in the details:

struct list { ... };
list *newList() { ... }
static void expand(list *ns) { ... }
void add(struct list *ns, int n) { ... }
void print(list *ns) { ... }

19

https://csijh.gitlab.io/COMS10008/lectures/modules/list.h
https://csijh.gitlab.io/COMS10008/lectures/modules/list.c

listdemo.c

The demo program
The program that uses list.h is:

#include "list.h"

int main() {
 list *numbers;
 numbers = newList();
 add(numbers, 3);
 add(numbers, 5);
 add(numbers, 42);
 print(numbers);
}

20

https://csijh.gitlab.io/COMS10008/lectures/modules/listdemo.c

Encapsulation
The list module as a whole has been encapsulated (given
a protective wrapper)

From listdemo.c you cannot misuse the list module,
you can only call the functions provided

You can't even call malloc(sizeof(struct
list)) because the compiler doesn't know the size

This is a very robust way to write multi-module
programs

21

Organisation
Two different designs will often be implemented in the
end using quite similar functions

What's different is the organisation of the functions

It turns out, for all programs except the tiniest, that the
organisation of the functions is just as important as the
functions themselves

The issues are the ease of development, and the ease of
automatic testing

22

Example: a grid game
Imagine a graphical grid-based game, e.g a maze

The grid containing blank spaces, walls, a player, and
some stars to collect

23

Sketch
Let's do a rough sketch of some possible modules

A reasonably sensible split might be an overall game
control module, a grid module to keep track of where
everything is, an entity module for the behaviours of
the individual things in the grid, and a display module
to show the game on screen

24

Module sketch
So we'll need, maybe, modules like this

25

Dependencies
Next, we want to work out which modules depend on
which others

A module A depends on a module B if a function in
module A calls a function in module B

We can picture it by drawing an arrow from A to B

Working out dependencies in advance needs experience,
because you have to imagine the function calls needed
in the implementation

26

Dependency sketch
It is easy to imagine dependencies like this:

27

A tangled mess
The sketch that we've drawn has a general problem and
a specific problem

The general problem is that it is a tangled mess

If modules have a mess of dependencies between them,
there is no gain, compared to just putting all the
functions in one file

And that limits the size of a project before it gets out of
hand and becomes unmaintainable

28

Cyclic dependencies
The more specific problem is cyclic dependencies

That's where modules depend on each other

In that case, there is no easy order to develop them in

For example, suppose an upgrade is needed which
affects all the modules

Then the program is going to be broken until all the
modules are back in working order - that's too long
(see aside: agile development)

29

http://localhost:8080/COMS10008/asides/agile.html

Development
Avoiding dependency cycles is hugely important,
making development 'easy' instead of 'nearly impossible'

A development step starts with a working program, and
adds a feature, which may affect all the modules

But you can find one module which doesn't depend on
anything, fix it up, and test it, even though the other
modules are all temporarily broken

Then you can fix up another module, which doesn't
depend on anything except the first one, and test it

And so on, until the whole program works again

30

Getting rid of cycles
Let's try to get rid of the cyclic dependencies in the
sketch

To do that, we have to imagine what the function calls
in the implementation are for, and then come up with a
better design

31

Key presses
One dependency that is causing trouble is display
depending on game

This is presumably because display calls a function in
game when a key press is detected

32

Reversal
A good plan is to reverse the dependency, so that game
depends on display

Game can call display to ask for the next key press

The display will need an event queue, but there is
usually a need for an event queue anyway

33

Grid and entities
Another cycle problem, seemingly inevitable, is that the
grid needs to know about the entities in it, and entities
need to call grid functions to find their neighbours

34

Grid implementation
A good solution to this is to stop the grid depending on
the entity module

Although the grid stores entities, it doesn't need to
know anything about the entities, or to call any
functions on them

So the grid can be generic, i.e. we can define it to store
objects of any type - "grid of anything"

35

Generic modules
The C language does not provide generic types (except
arrays, e.g. t a[]; means a has type "array of t")

All C provides is void pointers, of type void *

A void pointer variable can hold a pointer of any type

This is "official", so you don't normally need casts, but
beware because the result is not properly typesafe

(The lack of safety is not usually a big practical problem,
because the kind of bug that it leads to is fairly rare)

36

Forward references
Maybe having a generic grid module based on void
pointers seems too complex, or too unsafe

An alternative is a forward reference

The opaque type struct entity can be declared in
the grid header grid.h instead of the entity header
entity.h

The grid module knows nothing about it, so can only
handle it via pointers, and its details get filled in by the
entity module entity.c as before

37

Game and entities
One further cycle problem is that the game depends on
the entities because it acts as a controller, and the entity
module depends on the game because entities need to
update the global game state, e.g. the score

38

Play and state
The problem is we have one module which both acts as
a controller and keeps track of the global game state

A good solution is to split it into two modules

Let's put the controller aspects into a module called
play, and the game state aspects into a module called
state

39

State
We are aiming for this situation:

It is possible that the state module might still depend on
the entity module, because the state needs to store
entities (in our case just the player entity)

But it doesn't need to call entity functions, so we can
make it generic again

40

No cycles
The design changes we've come up with have left us
without cycles:

To simplify, indirect dependencies are being left out - if
A depends on B and B depends on C, there is no need to
draw an arrow from A to C

41

Shared modules
The display module is a shared one:

Its header file gets included in state.h and grid.h,
and they both get included in entity.h, so
display.h would be included twice when compiling
the entity module

42

Typedefs
It turns out that there is a problem when the header of
a shared module gets included twice

Something could get defined twice, which the compiler
might not accept

In C99, there used to be a problem with typedefs (which
C counted as definitions rather than declarations), but
the typedef problem has gone away in C11 (the same
typedef can appear multiple times)

43

Enumerations
That leaves enumerations as the only remaining
problem - if a header contains:

enum suit { Club, Diamond, Heart, Spade };
typedef enum suit suit;

then that header can't be included twice

44

suit.h

Solution
Define the enumeration in its own module, with
functions but with no other custom types, and define
suit as a synonym for int rather than enum suit

enum suit { Club, Diamond, Heart, Spade };
typedef int suit;

In any other header which needs the suit type, write
typedef int suit; not #include <suit.h>

In a .c file that needs the functions, use
#include <suit.h>

45

Preprocessor solution
What tutorials usually recommend is to surround a
header or an individual type declaration with a
protective #ifdef guard which prevents it from being
included twice

This is used extensively for library modules, but it uses
preprocessor trickery which it is better to avoid in
ordinary project modules

See wikipedia entry for details

46

https://en.wikipedia.org/wiki/Include_guard

Linear order
With no cycles, modules can be put in a linear order:

Then any development step can upgrade and test the
modules one-by-one from right to left

47

Graphics problem
We have one problem left - currently, everything
depends on the graphics in the display module

It is perfectly possible to design a program this way, and
it is very common, but it has a disadvantage

Graphics makes automatic testing difficult, so in our
case, graphics makes the auto-testing of every module
difficult

48

Model-View-Controller
You often hear about the "MVC design pattern" for
programs with (graphical) user interfaces

The problem is, there is no consensus about how the
three groups of modules depend on each other

A good approach is to have the controller depend on the
other two, which are independent of each other

49

Final design
That leads to this final design:

The entity/grid/state modules form the "model" (the
logic), and can be auto-tested, the display module is the
view, and the play module is the controller

The play module drives the model, extracts data from it,
and gives it to the view

50

Maze program
So let's start development

It will very soon turn out that nearly every module
needs a fail function to print a message and exit

Defining it once and for all helps to avoid the
temptation to leave out safety tests

So let's create a base module to hold fail (and
succeed as a very minor convenience)

51

base.h

Change of design
So at the very first step, we need to change our design
by adding a module - that's totally normal

/* The base module provides success and fail
functions. */

// Print with newline, avoiding the need for stdio.h.
void succeed(char *message);

// Report a test failure or bug, and stop the program.
void fail(char *message);

52

https://csijh.gitlab.io/COMS10008/lectures/modules/base.h

base.c

Auto-testing
Now is the time to design auto-testing - don't put it off!

We will need multiple main functions for testing each
module, and a complete program cannot contain more
than one main - let's use conditional compilation:

#ifdef test_base

int main() { ... }

#endif

For testing the module, test_direction is defined
and main is included, otherwise main is left out

53

https://csijh.gitlab.io/COMS10008/lectures/modules/base.c

Makefile

Makefile
At the same time, we should start developing a makefile:

.PHONY: base
CC = clang -Dtest_$@ -std=c11 -Wall -pedantic -g -o maze

base:
 $(CC) base.c
 ./maze

.PHONY says "always compile, don't check timestamps"

CC defines the compiler and options (the program
produced is always called maze)

$@ is replaced by the target name, and the -D option
defines a variable as if with #define

54

https://csijh.gitlab.io/COMS10008/lectures/modules/Makefile

What's next
It seems the grid module is next

We want to be able to move round using directions
rather than coordinates, so that all coordinate
calculations stay inside the grid module

We need an enumerated type to define the directions

According to our conventions, the enumerated type
should go in its own module

So, another change of design, we'll add a direction
module

55

Coordinates
There are two common coordinate systems in maths,
cartesian coordinates (x right, then y up) and matrix
row/column coordinates (r down, then c right)

The most common convention in computer science is
graphics coordinates: x right, then y down, a
compromise because a display is both a cartesian space
and a matrix of pixels

So that's what we will use (what matters is to be
explicit, consistent and clear)

56

direction.h

Direction header
Here's a suitable header for the direction module:

/* Directions allow entities to move around in the grid
without using absolute coordinates. Graphics coordinates
are used, i.e. (x,y) with x to the right and y down. Don't
include this header in other headers, just repeat the typedef. */

// There are eight directions, plus HERE for the current position.
enum direction {
 HERE, NORTH, SOUTH, EAST, WEST,
 NORTHEAST, NORTHWEST, SOUTHEAST, SOUTHWEST
};
typedef int direction;

// Find the x offset corresponding to a given direction.
int deltaX(direction d);

// Find the y offset corresponding to a given direction.
int deltaY(direction d);

57

https://csijh.gitlab.io/COMS10008/lectures/modules/direction.h

direction.c

Inclusions
The inclusions in the direction.c file are:

#include "direction.h"
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>

A module should always include its own header file, so
the compiler checks consistency

stdio/stdbool are used just for implementation, so
can be included just in the .c file, not the header

"..." means local module, <...> means system module

58

https://csijh.gitlab.io/COMS10008/lectures/modules/direction.c

Grid module
The grid module has a nextCell function to find the
entity in a neighbouring cell in a given direction

That way all coordinate calculations for finding
neighbouring cells are done in one place, in the grid
module

The grid module has a forward reference to the entity
type, and is written in a generic style without using any
entity functions, to avoid a dependency on the entity
module

59

Grid type 1
There are lots of possibilities for the grid type

The simplest is to define width and height as constants:

enum { width = 9, height = 9 };
struct grid {
 entity *cells[width][height];
};
...
entity *e = g->cells[x][y];

The problem is, the size can't be changed without
recompiling

60

grid.c

Grid type 2
The most straightforward flexible approach is to use an
array of pointers to column arrays

struct grid {
 int width, height;
 entity ***cells;
};
...
entity *e = g->cells[x][y];

This uses a lot of pointers, and each column array is
allocated separately - this is what our grid module uses

And there are a lot of intermediate possibilities

61

https://csijh.gitlab.io/COMS10008/lectures/modules/grid.c

Sentinels
Sentinels are sometimes used to avoid edge-case
programming

With the grid, we can make sure there are walls all the
way round the edges (not necessarily visible on screen)

That way, if a calling function looks for a neighbour in a
given direction, this will never go outside the grid

There is still an internal test for out-of-bounds
coordinates, as a defensive measure to detect bugs, but
callers need not be aware of it

62

https://en.wikipedia.org/wiki/Sentinel_value
https://en.wikipedia.org/wiki/Defensive_programming

state.h

state.c

State module
The state module defines the state type, which tracks
the player and the number of stars left to find:

struct state;
typedef struct state state;

struct state {
 entity *player; int stars;
};
...

63

https://csijh.gitlab.io/COMS10008/lectures/modules/state.h
https://csijh.gitlab.io/COMS10008/lectures/modules/state.c

Entities
With the entity module, a new issue arises

An entity stores its own (x,y) position in the grid

A problem is keeping its (x,y) fields consistent with its
actual location in the grid

It is important to isolate coordinate handling as much as
possible, so only a few functions are responsible for this
consistency

A good approach is to break the entity module in two

64

Two modules
The entity module itself will provide just a few
primitive but powerful functions which use the
coordinates

This will be very stable, and potentially re-usable from
one game to another

A new kind module will define the behaviour of the
different kinds of entity, but it won't have access to the
(x,y) coordinates, will only use the functions from the
entity module, and cannot break consistency

65

entity.h

Kinds
To specify different kinds of entity, there is a kind type:

typedef char kind;

Characters are used as kinds, so that level descriptions
can be text-based

Actual constants for kinds of entity are not defined in
the entity module, because the entity module is generic,
so a forward reference will do

66

https://csijh.gitlab.io/COMS10008/lectures/modules/entity.h

entity.c

Entity structure
The entity structure is:

struct entity {
 kind k; int x, y; state *s; grid *g;
};

Having references to the state and grid objects means
that an entity can act autonomously

This is another aspect of object oriented programming -
making objects autonomous often helps to improve a
program's organisation

67

https://csijh.gitlab.io/COMS10008/lectures/modules/entity.c

entity.h

Entity functions
The most important functions are:

void move(entity *e, entity *target);
void mutate(entity *e, kind newKind);

The player moves by calling move, which swaps the
player entity with a blank space next to it in the grid

When a star is collected, mutate is called to make it
disappear by changing it into a blank space

These can support quite a wide variety of games

68

https://csijh.gitlab.io/COMS10008/lectures/modules/entity.h

kind.h

Kind module
The kind module defines specific kinds of entity as an
enumerated type

enum {
 BLANK='.', WALL='#', STAR='*', PLAYER='@'
};

(In actual fact, these constants don't need to be in the
header file)

69

https://csijh.gitlab.io/COMS10008/lectures/modules/kind.h

kind.h

Kind functions
The kind module defines three functions:

void wake(entity *e);
void die(entity *e);
void act(entity *e, direction d);

The wake function is called on each entity at the start,
so it can affect the initial game state

die is called on an entity (a star in our game) when it
disappears, to update the game state

act is called on an active entity (the player in our
game) to get it to take one step

70

https://csijh.gitlab.io/COMS10008/lectures/modules/kind.h

action.c

The wake function
The wake function looks like this:

void wake(entity *e) {
 state *s = getState(e);
 kind k = getKind(e);
 if (k == PLAYER) setPlayer(s, e);
 else if (k == STAR) addStar(s);
}

The player records itself in the state

A star adds to the count in the state

71

https://csijh.gitlab.io/COMS10008/lectures/modules/action.c

display.h

The display module
The display module defines constants for the keys
pressed by the user

A separate module to define an enumerated type is
avoided by defining the keys as external constants
(though they can't then be used in switch statements)

typedef char key;
extern const key LEFT, RIGHT, UP, DOWN, SPACE;

72

https://csijh.gitlab.io/COMS10008/lectures/modules/display.h

display.h

Display functions
The display module also provides functions:

key getKey(display *d);
void drawEntity(display *d, int k, int x, int y);
void drawFrame(display *d);

getKey waits for the user to press an arrow key or
space, and returns the key pressed

drawEntity draws a single cell into a window image

drawFrame transfers the whole window image onto
the screen to update what the user sees, and then delays
for 20 milliseconds (to support animation)

73

https://csijh.gitlab.io/COMS10008/lectures/modules/display.h

display.c

SDL library
The display.c file uses SDL:

#define SDL_MAIN_HANDLED
#include <SDL2/SDL.h>

The display.h header file does not include any SDL
headers or mention any SDL functions or types

And no other module includes any SDL headers or
mentions any SDL functions or types

74

https://csijh.gitlab.io/COMS10008/lectures/modules/display.c

display.c

Display structure
The display structure is:

struct display {
 int width, height, imageWidth, imageHeight;
 SDL_Window *window;
 SDL_Surface *surface;
 SDL_Surface *images[128];
};

The SDL window and surface are needed for drawing,
and the images for the different kinds of entity are
stored so they only get loaded from files once

75

https://csijh.gitlab.io/COMS10008/lectures/modules/display.c

display.c

Error handling
Programs using the SDL library can be difficult to
debug, so care is taken to catch SDL errors, according to
the SDL function documentation, and report them:

SDL_Surface *image =
 P(SDL_LoadBMP(path));

A couple of custom functions P and I help to make
error handling look minimal

76

https://csijh.gitlab.io/COMS10008/lectures/modules/display.c

display.c

Drawing
The simplest strategy is used for drawing:

SDL_BlitSurface(image, NULL, d->surface, box);
...
SDL_UpdateWindowSurface(d->window);

Each cell is drawn into an image in memory (the
'window surface') and then that image is used to update
the screen once per frame

77

https://csijh.gitlab.io/COMS10008/lectures/modules/display.c

display.c

Testing
The display module has a test function:

int main() { ... }

The module can't be automatically tested, so instead it is
'manually' tested - the test function creates a window
for a few seconds, to be checked by eye

78

https://csijh.gitlab.io/COMS10008/lectures/modules/display.c

maze.c

The play module
The play module is sufficiently small that it doesn't need
to be separate

It can be in maze.c, so it is the main program

It brings everything together:

int main() { ... }

79

https://csijh.gitlab.io/COMS10008/lectures/modules/maze.c

Makefile
display.h
kind.h
entity.h
grid.h
state.h
direction.h
base.h

maze.c
display.c
kind.c
entity.c
grid.c
state.c
direction.c
base.c

images/blank.bmp
images/player.bmp
images/star.bmp
images/wall.bmp

The files
The complete set of files is:

80

https://csijh.gitlab.io/COMS10008/lectures/modules/Makefile
https://csijh.gitlab.io/COMS10008/lectures/modules/display.h
https://csijh.gitlab.io/COMS10008/lectures/modules/kind.h
https://csijh.gitlab.io/COMS10008/lectures/modules/entity.h
https://csijh.gitlab.io/COMS10008/lectures/modules/grid.h
https://csijh.gitlab.io/COMS10008/lectures/modules/state.h
https://csijh.gitlab.io/COMS10008/lectures/modules/direction.h
https://csijh.gitlab.io/COMS10008/lectures/modules/base.h
https://csijh.gitlab.io/COMS10008/lectures/modules/maze.c
https://csijh.gitlab.io/COMS10008/lectures/modules/display.c
https://csijh.gitlab.io/COMS10008/lectures/modules/kind.c
https://csijh.gitlab.io/COMS10008/lectures/modules/entity.c
https://csijh.gitlab.io/COMS10008/lectures/modules/grid.c
https://csijh.gitlab.io/COMS10008/lectures/modules/state.c
https://csijh.gitlab.io/COMS10008/lectures/modules/direction.c
https://csijh.gitlab.io/COMS10008/lectures/modules/base.c
https://csijh.gitlab.io/COMS10008/lectures/modules/images/blank.bmp
https://csijh.gitlab.io/COMS10008/lectures/modules/images/player.bmp
https://csijh.gitlab.io/COMS10008/lectures/modules/images/star.bmp
https://csijh.gitlab.io/COMS10008/lectures/modules/images/wall.bmp

Wanderer
The structure of the maze program is suitable for much
more complex grid games, e.g. wanderer:

wanderer

It's a reconstruction of a retro game from the 1980's

It has 60 difficult levels, so don't get addicted unless you
have time

81

https://github.com/csijh/wanderer

