
Memory

1

Programs in memory
The layout of memory is roughly:

Virtual memory means that memory is allocated in
pages or segments, accessed as if adjacent - the platform
looks after this, so your program doesn't have to

If you try to access memory not belonging to your
program, you get a segmentation fault (segfault)

2

Zooming in
The layout of your program is roughly:

The code and constants are loaded when the program is
run, then the heap expands upwards, the stack expands
downwards

The three parts are usually separate segments, with the
code and constants being read-only

3

The stack
The stack is where local variables are allocated during
function calls

New space is allocated on entry to a function, then
discarded on exit

This allows functions to be recursive, e.g.

int factorial(int n) {
 if (n == 0) return 1;
 int f = factorial(n - 1);
 return n * f;
}

4

Calls
Here's the stack during factorial(3) (simplified)

5

Normal calls
The example showed a recursive function

But the same sort of thing happens with normal
functions

Memory is allocated for main, then for sort (say),
then for compare, then compare returns and sort
calls swap, then sort repeatedly makes similar calls,
then returns, then maybe main calls something else,
then eventually returns

The stack grows and shrinks 'at random' as functions are
called and return, until eventually main returns

6

The heap
The heap is used for dynamically allocated memory, i.e.
for items which can't be handled by function-call-based
nested lifetimes

The most common case is an array or any other data
structure which needs to grow when new data arrives

The heap is managed by the malloc and free library
functions

7

malloc and free
The library functions malloc ("memory allocate") and
free allocate and deallocate memory blocks

/* Demo: string using malloc/free */
#include <stdio.h>
#include <stdlib.h>

int main() {
 char *s = malloc(4); // was char s[4];
 strcpy(s, "cat");
 printf("%s\n", s);
 free(s);
}

8

stdlib
The stdlib library contains the functions malloc
and free so we need to include its header

#include <stdlib.h>

Note: this provides the compiler with the declarations
(signatures) of the library functions, so it knows how to
generate calls

Note: the code of standard libraries like stdlib and
stdio is linked automatically by the compiler, but
other libraries may need to be mentioned explicitly

9

Calling malloc
The call to malloc allocates the memory

char *s = malloc(4);

The variable is declared as a pointer to the first element
of an array

The argument to malloc is the number of bytes
desired

The return type of malloc is void * which means
"pointer to something", compatible with all pointer types

10

Visualising malloc
You need to visualise the effect of malloc

Before the call, s is random rubbish

After the call, s is a pointer to some new space

11

Freeing
The new memory is freed explicitly when not needed
any more

free(s);

The call is unnecessary in this case because the program
is about to end, and all of its memory will be returned
to the operating system

But you should free all malloced memory, to avoid
memory leaks, and the advanced debugging option
-fsanitize=address will make sure you do

12

Indexing
The new memory is indexed like an array

s[0] = 'c';
strcpy(s, "cat");

The compiler allows array notation to be used on
memory accessed via a pointer

In fact s[i] is just an abbreviation for *(s+i)

An array is not the same as a pointer to the start of an
array, but they are treated the same by the compiler
when it comes to indexing

13

The heap
Here's the heap after some malloc and free calls

The heap never shrinks, but gaps appear after free

malloc searches for the best gap, free merges gaps,
and both use a header, not shown, at the start of
allocations and gaps to keep track of everything

So, they can be a bit expensive, but there are further
details which reduce the cost

14

What's wrong?
Why is this not a good thing to do?

char *s = malloc(4);
s = "cat";

15

What's wrong?
Why is this not a good thing to do?

char *s = malloc(4);
s = "cat";

The pointer s is updated to point to the constant string,
so it no longer points to the allocated memory

The allocated memory will remain allocated but unused,
i.e. wasted, for the rest of the program

16

Allocating an array
Suppose you want an array of 10 integers:

int *numbers = malloc(10 * sizeof(int));

Don't forget to multiply by the size of the things you
are allocating

17

calloc
There is an alternative function calloc

int *numbers = calloc(10, sizeof(int));

One difference is trivial (comma instead of *)

The other is that the memory is cleared (set to zero)

Some textbooks, tutorials, lecturers use calloc all the
time, but (a) clearing the memory is inefficient if you
are about to initialise it yourself, and (b) it might give
beginners the mistaken idea that variables in C are
always zeroed

18

Reallocation
How do you change the capacity of an array?

char *array = malloc(8);
int capacity = 8;
...
capacity = capacity * 3 / 2;
array = realloc(array, capacity);

The realloc function allocates a new array, copies the
old array into the start of the new array, and deallocates
the old array!

The pointer changes, so array needs to be updated

19

Reallocation efficiency
The realloc function sounds costly (searching for a
new gap and copying the old array into it)

But there are two circumstances where it is cheap

If the old array is at the end of the heap, realloc can
just make it bigger without moving it

If the array is large, realloc uses a separate virtual
memory segment for it, to avoid any further copying
costs

20

Strategy
Suppose arrays increase in size (using realloc) when
they run out of space

What size should they start at, and how much should
their sizes be increased by?

Generally, start small (24 bytes) so lots of empty arrays
aren't space-inefficient

And multiply the size (by 1.5) so that copying large
arrays isn't time-inefficient

(Multiplying by 2 may prevent merging old arrays to
store a new one)

21

Structures
Before, we did this:

struct bird ...;
typedef struct bird bird;

int main() {
 bird jaydata = { 41, 37 };
 bird *jay = &jaydata;
 ...
}

But there are problems if we don't know in advance how
many birds we are going to want

22

Allocating structures
Instead we can now do this

bird *newBird(int x0, int y0) {
 bird *b = malloc(sizeof(bird));
 b->x = x0;
 b->y = y0;
 return b;
}

int main() {
 bird *jay = newBird(41, 37);
 ...
}

23

Initialising structures
To initialise more compactly, we can do this:

bird *newBird(int x0, int y0) {
 bird *b = malloc(sizeof(struct bird));
 *b = (bird) {x0, y0};
 return b;
}

Or this:

...
 *b = (bird) {.x = x0, .y = y0};
...

24

Visualisation
Visualising the memory during newBird:

25

Word counting
Before, we did this:

struct word {
 char s[10];
 int count;
};
typedef struct word word;

The problem is that words have different lengths

26

Flexible array fields
Now, we can do this:

struct word {
 int count;
 char s[];
};
typedef struct word word;

The array field must go last in the structure, with no
length specified, then it can have a variable length
(stretching past the notional end of the structure)

27

Allocation
Here's how to allocate a flexible array:

struct word { int count; char s[]; };
typedef struct word word;

word *newWord(char *s) {
 int n = strlen(s) + 1;
 word *w = malloc(sizeof(word) + n);
 strcpy(w->s, s);
 w->count = 0;
 return w;
}

You allocate memory for the structure plus the array

Note this is a recent C feature

28

https://en.wikipedia.org/wiki/Flexible_array_member

Lines
Suppose a program reads in a line

We might guess that this would be enough:

char line[1000];

But if a user feeds a line into our program which has
been generated from some other program, this is
probably not enough!

We've already seen that we can use realloc to
increase the size of an array

29

Flexible array field?
So maybe we could write this:

struct line { int size; char s[]; };
typedef struct line line;

// Resize to make room for at least n characters
line *resize(line *l, int n) { ... }

But the pointer to the structure changes on resize, so
this would have to be called with:

l = resize(l, n);

It is incredibly easy to forget the l = bit

30

Pointer field
The normal solution is to write this:

struct line { int size; char *s; };
...
void resize(line *l, int n) { ... }

Now there are two lumps of memory and two pointers

The structure pointer allows functions to update the
fields in place, the array pointer makes sure the
structure never moves, only the pointer field inside it

31

Binary compatibility
Many other languages are compiled to have 'binary
compatibility' with C

That means they use the same conventions about code,
heap, stack, and function calls, either for the whole
language, or at least for the operating system service
calls and cross-language calls

32

Stack details
The compiler uses the stack memory for each function
call to store

local variables, including arguments
the return address in the code
saved register contents from outer calls
intermediate calculations that don't fit in registers

The result is that the exact layout of the stack is very
much dependent on architecture and compiler choices,
and can't easily be analysed by hand (hence -g option
and gdb for debugging)

33

Arguments
Conventionally, arguments belong to the caller (calling
function) rather than the callee (called function)

This allows variable-argument functions like printf

In retrospect, this was a bad design choice: it is illogical,
and it prevents simple tail-call optimisations

It would have been better to generate special-case code
for (fairly rare) variable-argument calls

But the issue isn't as simple as described here!

34

Two improvements
There are two common ways to improve programs
where dynamic allocation efficiency is an issue

One is to use the glib library, which contains
improved versions of malloc and free

Another is to allocate memory in large lumps, and
implement a custom system for efficient high-turnover,
small-object allocation within the lumps

35

Memory leaks
Since calling free is up to the programmer, even a
correct program may gradually use up more and more
memory unnecessarily

That's called a memory leak, and is an important
potential flaw in long-running programs such as servers

Counter-measures are to use a library which deallocates
automatically via garbage collection, or to use a library
which detects leaks so they can be fixed, or use the new
-fsanitize=address compiler option

36

Relocation
A program can be compiled into code which expects to
be loaded at a particular location in memory

Alternatively, a program can be compiled into code plus
extra information about the location-sensitive parts

The extra info allows the program to be relocated, i.e.
loaded into different locations on different runs

37

Position independent code
A scheme which is much more elegant and flexible is
for compiled machine code to be independent of where
it is loaded in memory

Then relocation issues are avoided

It involves having an instruction set where jumps and
calls are relative to the current location rather than
absolute (e.g. "call the function 100 bytes further on
from here")

Despite its clear superiority, this hasn't become normal

38

Linking
Even with position independent code, linking is
necessary

This involves sorting out function calls (and other
references) from one program component to another,
e.g. calls to library functions

39

Static linking
With static linking, the parts of the library which are
actually used by the program are copied into the
program by the compiler

That way, the compiler can relocate the library code in
advance, sort out all the function calls and other
references between parts, and create a complete
program which is ready to run

40

Dynamic linking
With dynamic linking, the library code is potentially
shared between programs to save memory space

The compiler needs to know, somehow, where to expect
the library to be in memory when the program runs

Then the program and the library are linked by the
system when the program is loaded and prepared for
execution

Shared libraries are called DLLs in Windows, and SOs
on Linux/MacOs

41

The DLL approach
The approach taken by Windows is:

Compile a DLL library into code which is always at a
fixed place in virtual memory

Then compile each program into fixed code which
refers to the library code at its known location

When loading each program, arrange its virtual memory
so that the virtual library location refers to the actual
physical library location

42

A DLL problem
The DLL approach has a fundamental problem:

What happens if two independent DLL libraries have
been compiled into the same place in virtual memory,
and a program wants to use both?

The solution in Windows is (a) have a central authority
for 'official' libraries which allocates locations and (b) if
that fails, abandon sharing and copy one of the libraries
into the program

For further problems, look up "DLL hell" in Google!

43

The SO approach
The "Shared Object" approach in Unix-based systems is:

Compile a program which uses an SO to retain
relocation information about the library references

When loading the program, find the library location and
complete the linking of the program by resolving the
library references

This is slightly less efficient, but always works

44

SO problems
The SO approach still has administrative problems:

The compiler needs to know where the SO library file
is, to find out what functions it makes available

The loader needs to know which SO the program needs,
and where the SO library file is in case it needs to be
loaded into memory for the first time

There are considerable potential problems with
installation locations on disk, library versions, where to
put the location information, and discrepencies between
compile-time and load-time information

45

Shared library design
Shared libraries often have a monolithic design, making
them unsuitable for static linking (because the whole
library gets copied into the program)

The libraries are typically very big - programs only load
quickly because the platform-specific libraries they use
are already loaded into memory

If you port a program to another platform, it typically
takes 20 seconds to load, because the shared libraries
have to be loaded as well

So true cross-platform programming is very difficult

46

The future
Nobody knows the future, but these would be good:

scrap virtual memory
make all machine code position independent
make data position independent (relative pointers)
make pointers variable-sized
ensure all machine code is validated in advance
make all memory 'object oriented', even the stack
provide hardware support for garbage collection
make all platforms compatible

47

