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Hardware versus software
In hardware such as chip design or architecture, designs
are usually proven to be correct using proof tools

In software, a program is very rarely proved correct

Why?
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Scope
Chip and architecture designs are all quite similar - it is
a fairly small domain, so experience can be carried over,
and automatic or semi-automatic tools are effective

Software covers a huge range of topics, so the
background theory needed to prove a program correct
might involve geometry (for 3-D programs), physics (for
'realistic' programs), graph theory (for network or web
or social media programs), or any other application
theory

So for software, proof has to be at least as creative as
programming, and we can't usually afford the effort
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Impossibility
Another reason why proof is not used more often is that
it is sometimes impossible or nearly impossible

One reason is that a proof would involve solving a
problem that we don't (yet) know how to solve (e.g.
Collatz program, see later)

Another is that a program often has no independent
specification against which to prove it correct - it is its
own specification (e.g. face recognition)
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Why study software logic?
To program well, you need a good mental model of
what is going on in a program

Looking at logic helps you to build or refine that mental
model, in other words the better your grasp of logic, the
better your intuition will be

It is vital to recognize when the underlying logic is
complex, and therefore intuition is likely to go astray

Earlier, I said it is important to learn to trace the
execution of a program, this is just a more precise
version of tracing
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What logic to study?
We are going to look at Hoare logic, from a semi-
inituitive point of view rather than in full mathematical
detail

The aim is not to be able to contruct serious
mathematical proofs, but to learn to become aware of
the underlying logic when programming, to program
more accurately

At a minimum, you will learn what precondition,
postcondition, invariant and variant mean, so you can
understand when people talk about them

6



Hoare triples
We will be looking at statements like this:

{ x == 41 } x = x + 1; { x == 42 } 

The first part in curly brackets is a statement called the
precondition, and the last part is the postcondition

In between is a fragment of a program
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C notation
{ x == 41 } x = x + 1; { x == 42 } 

The middle part has to be written in C if we are
studying C

I'm choosing to use C notation for the conditions on
either side, so as to use plain text and to make the
statements readable to C programmers as boolean
expressions

But they are mathematical expressions, so (a) no side-
effects and (b) they can say things which C can't express
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Assertions
To use logic in C itself, you can write:

#include <assert.h> 
... 
assert(x == 41); 
x = x + 1; 
assert(x == 42); 

Assertions are conditions that are checked when your
program runs - their purpose is either to do auto-testing
or to guard against bugs

You can switch them off with NDEBUG
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Meaning
{ x == 41 } x = x + 1; { x == 42 } 

A triple is a mathematical statement which is true or
false, hopefully true

It means: if the precondition is true just before the code
is executed, then the postcondition is true just after the
code has been executed

You may or may not have to prove separately that
execution reaches the end of the code
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Language features
For each language feature in C, there is a way of
checking that a statement about it is true

We will have a brief look at assignments, sequences, ifs,
loops and functions
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The assignment rule
{ x == 41 } x = x + 1; { x == 42 } 

Let's say an assignment consists of a variable (x) being
updated by a right hand side (RHS) expression (x + 1)

Take the postcondition, replace the variable by the right
hand side expression, and then check that the result is
implied by the precondition
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The abstract assignment rule
In more abstract mathematical notation:

{ P[x\E] } x = E; { P } 

You can read this something like "if precondition 'P with
x replaced by E' is true, and code 'x becomes E' is
executed, then postcondition P is true"

The meta-variables stand for arbitrary conditions, C
variables, or C expressions (according to context)

Note P[x\E] is sometimes written P[E/x]

Note there is an extra rule to say pre implies post
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Which version?
In my opinion, the informal version in words is not
enough on its own, because it doesn't give precise
details

The formal version is not enough on its own, because it
doesn't say what to do

So you need both, plus examples
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Example 1
{ x == 41 } x = x + 1; { x == 42 } 

Take the postcondition:

x == 42 

Replace the variable (x) by the RHS expression (x+1):

x + 1 == 42 

Is this implied by x == 41?

Yes it is, so the statement is true
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Example 2
{ x == 41 && y == 3 } y = x + 1; { x == 41 && y == 42 } 

Take the postcondition:

x == 41 && y == 42 

Replace the variable (y) by the RHS expression (x+1):

x == 41 && x + 1 == 42 

Is this implied by x == 41 && y = 3?

Yes it is, so the statement is true
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The sequencing rule
{ true } x = 1; y = 2; { x == 1 && y == 2 } 

(A precondition of true means no restriction)

Let's say a sequence consists of a first statement
followed by a second statement

Find an intermediate condition that can act as a
postcondition for the first statement, and a precondition
for the second statement
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The abstract sequencing rule
{ P } S1 { Q }, { Q } S2 { R } 
—————————————————————————————— 
      { P } S1; S2 { R } 

You can read this "if you know 
{ P } S1 { Q } and 
{ Q } S2 { R }, then you can deduce 
{ P } S1; S2 { R }"

The semicolon is a 'mathematical' sequencing operator
which combines two statements to form a compound
statement (treating C's semicolon as a separator)
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Example 3
{ true } x = 1; y = 2; { x == 1 && y == 2 } 

To check that the statement is true, find a condition to
put in the middle, in this case obviously x == 1 will
do

{ true } x = 1; { x == 1 } 
{ x == 1 } y = 2; { x == 1 && y == 2 } 

Check whether these are both true using the assignment
rule - they are, so the statement is true
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The if rule
{ true } if (x<0) y = -x; else y = x; { y >= 0 } 

Let's say an if statement has a test, a then statement, and
an else statement

Add the test to the precondition and check the then
statement, and also add the negation of the test to the
precondition and check the else statement
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The abstract if rule
{ P && B } S1 { Q },  { P && !B } S2 { Q } 
—————————————————————————————————————————— 
{ P } if (B) S1 else S2 { Q } 

This captures mathematically the way the if statement
works, breaking it down into two cases
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Example 4
{ true } if (x < 0) y = -x; else y = x; { y >= 0 } 

Add the test to the precondition and check the then
statement

{ true && x < 0 } y = -x; { y >= 0 } 

Add the negation of the test to the precondition and
check the else statement

{ true && x >= 0 } y = x; { y >= 0 } 

These are both true, so the original statement is true
(though the postcondition could be stronger)
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If without else
What do you do with an if statement that has no else
part?

You use the fact that the default for the else part is "do
nothing"

Mathematically, you need a symbol which means "do
nothing" (often skip) and a skip rule (the precondition
must directly imply the postcondition)

But we are going to gloss over this, and other details
such as types and scope
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The while rule
{ n > 0 } while (n > 1) n = n / 2; { n == 1 } 

Here's where things get interesting - we assume the
very simplest kind of while loop for now

Let's say a while loop has a test and a body (statement)

Find an invariant and check that it is implied by the
precondition, preserved by the loop body, and with the
negation of the test implies the postcondition 
 
Also, find a variant, an integer which starts and stays
non-negative, and is reduced by the loop body
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Preserving the invariant
The invariant for a while loop needs to be a strong
statement, which is true every time round the loop and
after the loop

Preserving the invariant means checking that if the
invariant is true, and the test is true, so that the loop
body is executed, then the invariant is still true
afterwards

Then the invariant will be true after the loop has
finished (by induction on the number of times the loop
is executed), and the test will be false, and you can
check the postcondition
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Termination
{ n > 0 } while (n > 1) n = n / 2; { n == 1 } 

How do you check termination?

Find a variant, that is (e.g.) an integer which starts off
>=0, which stays >=0, but which is reduced by at least
one each time round the loop

There are other possible variants, but they can always
be converted to a non-negative decreasing integer if you
try hard
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The abstract while rule
{ I && B } S { I } 
I && ! B   =>   Q 
{ I && B && V >= 0 } V0 = V; S { V >= 0 && V < V0 } 
——————————————————————————————————————————————————— 
{ I && V >= 0 } while (B) S { Q } 

I is the invariant condition, V is the variant expression,
and V0 remembers the original value of V (with V0 a
variable not mentioned in S)

(In C, p => q can be written !p || q)
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Example 5a
{ n > 0 } while (n > 1) n = n / 2; { n == 1 } 

Let's choose n >= 1 as the invariant, it is clearly
implied by the precondition, and we can check:

{ n >= 1 && n > 1 } n = n / 2; { n >= 1 } 

That is true, and now let's check that the invariant and
the negation of the test imply the postcondition:

n >= 1 && n <= 1   =>   n == 1 

That is also true, which just leaves termination
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Example 5b
{ n > 0 } while (n > 1) n = n / 2; { n == 1 } 

As our variant, we can choose n
{ n > 0 && n > 1 && n >= 0 } v = n; n = n / 2; { n >= 0 && n < v } 

Here v is an added variable giving us access to the old
version of the variant

This amounts to saying if n >= 2 then n / 2 is less
than n which is true
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What about continue?
What if a loop has a continue statement in it?

Answer: transform the code to make it disappear

while(...) { 
    S1; 
    if (b) continue; 
    S2; 
} 

while(...) { 
    S1; 
    if (! b) { 
        S2; 
    } 
} 
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What about break?
If a loop has break in it, transform the code:

while(...) { 
    S1; 
    if (b) break; 
    S2; 
} 

bool ended = false; 
while(! ended && ...) { 
    S1; 
    if (b) ended = true; 
    else S2; 
} 
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What about for loops?
For a for loop, transform the code into a while loop:

for (i=0; i<n; i++) { 
    S; 
} 

i = 0; 
while(i < n) { 
    S; 
    i++; 
} 
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Why transform?
Some reasons for these transformations are:

to have a 'simple' core logic that can be studied
carefully
to avoid rules which become more and more
complex
to apply the logic to algorithms rather than
programs

Language features which 'jump around' are extremely
difficult to capture in the logic and are, arguably, also
intuitively complex, so should be used 'sparingly'
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Example 6
{ i==0 && s==0 } while (i<n) { s=s+n; i++; }; { s == n*n } 

Let's assume termination, and guess that the invariant is 
s == i*n and check it is implied by the precondition

i==0 && s==0    =>    s == i*n; 

The invariant is preserved if:

{ s == i*n && i<n } s=s+n; i++; { s == i*n } 

These two statements together are the same as an
inductive proof of the invariant (show true for i=0, and
show if true for i then true for i+1)
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Proof
Actual proof is fraught with danger:

it is normal in maths to use intuition, 'wave your
hands', and let intelligent readers to fill in the
gaps
if you focus on the process, it is easy to get the
details wrong
if you focus on details, you tend to work
'mechanically' and make mistakes in the process

So I recommend testing out proof ideas by writing code
with assert statements
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Example 7: Collatz
long n = ...;     start with any positive integer 
while (n > 1) { 
    if (even(n)) n = n / 2;   i f (n%２==０) 
    else n = 3*n+1; 
} 

For numbers up to 260, the loop terminates, but beyond
that it is still unknown (see Wikipedia)

There are other conjectures that have been shown false
only for very large numbers, so we really don't know

So proof of termination is sometimes impossible or
impractical
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What about functions?
A function body is a single block of code, so the normal
thing to do is:

First transform the function to get rid of any early
returns, perhaps by introducing a result variable

Then introduce a precondition at the start of the
function and a postcondition at the end

The precondition is any explicit or implicit restriction
on the arguments

E.g. "n is the number of..." implies n>=0
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Example 8: binary search
Even if you are not going to do a formal proof, thinking
about preconditions, postconditions, invariants and
variants gives you a powerful intuitive grasp which
helps get code right

Let's look again at the binary search algorithm
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Reminder
Here's a reminder of the code we wrote:

int search(char ch, int n, char a[n]) { 
    int start = 0, end = n, mid; 
    bool found = false; 
    while (! found  && end > start) { 
        mid = start + (end - start) / 2; 
        if (ch == a[mid]) found = true; 
        else if (ch < a[mid]) end = mid; 
        else start = mid + 1; 
    } 
    return found ? mid : -1; 
} 
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Precondition
What's the precondition?

Informally, it is "the input is a sorted array"

Slightly more formally:

{ i<j => a[i] <= a[j] } k = search(ch, n, a); { ... } 

The precondition lacks "for all indexes i and j of a",
which we would have to express in C as a double loop

Writing this down reminds us that some items in a may
be equal, so the result is not uniquely defined, unless
we say "first occurrence"
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Postcondition
What's the postcondition? Something like:

{ ... } k = search(ch, n, a); { k == -1 || a[k] == ch; } 

The postcondition isn't complete because it doesn't say
that if the result is -1 then ch isn't in the array

And it doesn't specify that the search should find the
first occurrence (which our code doesn't guarantee!)

And it doesn't say that the array and ch are const, i.e.
not to be altered
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Invariant
What's the invariant for the loop? Something like:

a[start] <= ch  && 
a[end] >= ch 

When we narrow the range inside the loop, we need to
make sure that if ch is in the array, at least one
occurrence is inside the range

If you want to guarantee the first occurrence, search for
the first occurrence of ch instead of just for ch, and
strengthen the invariant
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Variant
What's the variant?

Given the convention we set up for start and end,
we can just use V = end - start

We need to be sure that this always reduces, to make
sure that our code can't get stuck in an infinite loop

We can be sure that mid >= start and mid < end
(given that division rounds down), and the worst cases
are mid == start in which case start is increased
by one, and mid = end-1 in which case end is
decreased by one
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